Cargando…
Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches
Predicting the response of cancer cell lines to specific drugs is one of the central problems in personalized medicine, where the cell lines show diverse characteristics. Researchers have developed a variety of computational methods to discover associations between drugs and cell lines, and improved...
Autores principales: | Güvenç Paltun, Betül, Mamitsuka, Hiroshi, Kaski, Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820853/ https://www.ncbi.nlm.nih.gov/pubmed/31838491 http://dx.doi.org/10.1093/bib/bbz153 |
Ejemplares similares
-
Machine learning approaches for drug combination therapies
por: Güvenç Paltun, Betül, et al.
Publicado: (2021) -
Calpain Cleavage Prediction Using Multiple Kernel Learning
por: duVerle, David A., et al.
Publicado: (2011) -
Modelling [Formula: see text] with historical weather information improves genomic prediction in new environments
por: Gillberg, Jussi, et al.
Publicado: (2019) -
Simple integrative preprocessing preserves what is shared in data sources
por: Tripathi, Abhishek, et al.
Publicado: (2008) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022)