Cargando…
Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing
The use of machine learning (ML) has become prevalent in the genome engineering space, with applications ranging from predicting target site efficiency to forecasting the outcome of repair events. However, jargon and ML-specific accuracy measures have made it hard to assess the validity of individua...
Autores principales: | O’Brien, Aidan R, Burgio, Gaetan, Bauer, Denis C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820861/ https://www.ncbi.nlm.nih.gov/pubmed/32008042 http://dx.doi.org/10.1093/bib/bbz145 |
Ejemplares similares
-
Predicting CRISPR-Cas12a guide efficiency for targeting using machine learning
por: O’Brien, Aidan, et al.
Publicado: (2023) -
Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning
por: O’Brien, Aidan R., et al.
Publicado: (2019) -
Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology
por: Burgio, Gaetan
Publicado: (2018) -
Correction to: Redefining mouse transgenesis with CRISPR/Cas9 genome editing technology
por: Burgio, Gaetan
Publicado: (2018) -
Collateral damage and CRISPR genome editing
por: Thomas, Mark, et al.
Publicado: (2019)