Cargando…
Selection of variables for multivariable models: Opportunities and limitations in quantifying model stability by resampling
Statistical models are often fitted to obtain a concise description of the association of an outcome variable with some covariates. Even if background knowledge is available to guide preselection of covariates, stepwise variable selection is commonly applied to remove irrelevant ones. This practice...
Autores principales: | Wallisch, Christine, Dunkler, Daniela, Rauch, Geraldine, de Bin, Riccardo, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820988/ https://www.ncbi.nlm.nih.gov/pubmed/33089538 http://dx.doi.org/10.1002/sim.8779 |
Ejemplares similares
-
Variable selection – A review and recommendations for the practicing statistician
por: Heinze, Georg, et al.
Publicado: (2018) -
The roles of predictors in cardiovascular risk models - a question of modeling culture?
por: Wallisch, Christine, et al.
Publicado: (2021) -
Causal Model Building in the Context of Cardiac Rehabilitation: A Systematic Review
por: Akbari, Nilufar, et al.
Publicado: (2023) -
Publisher Correction: Re-estimation improved the performance of two Framingham cardiovascular risk equations and the Pooled Cohort equations: A nationwide registry analysis
por: Wallisch, Christine, et al.
Publicado: (2020) -
Re-estimation improved the performance of two Framingham cardiovascular risk equations and the Pooled Cohort equations: A nationwide registry analysis
por: Wallisch, Christine, et al.
Publicado: (2020)