Cargando…
The effect of a constraint on the maximum number of controls matched to each treated subject on the performance of full matching on the propensity score when estimating risk differences
Many observational studies estimate causal effects using methods based on matching on the propensity score. Full matching on the propensity score is an effective and flexible method for utilizing all available data and for creating well‐balanced treatment and control groups. An important component o...
Autores principales: | Austin, Peter C., Stuart, Elizabeth A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821239/ https://www.ncbi.nlm.nih.gov/pubmed/33027845 http://dx.doi.org/10.1002/sim.8764 |
Ejemplares similares
-
Statistical Criteria for Selecting the Optimal Number of Untreated Subjects Matched to Each Treated Subject When Using Many-to-One Matching on the Propensity Score
por: Austin, Peter C.
Publicado: (2010) -
Estimating the effect of treatment on binary outcomes using full matching on the propensity score
por: Austin, Peter C, et al.
Publicado: (2015) -
The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes
por: Austin, Peter C, et al.
Publicado: (2015) -
Variance estimation when using propensity‐score matching with replacement with survival or time‐to‐event outcomes
por: Austin, Peter C., et al.
Publicado: (2020) -
Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
por: Austin, Peter C
Publicado: (2011)