Cargando…
N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice
In diabetic animal models, high plasma/tissue levels of methylglyoxal (MG) are implicated in atherosclerosis. N-acetylcysteine (NAC) is a cysteine prodrug that replenishes intracellular glutathione (GSH) levels, which can increase the elimination of MG in diabetes mellitus (DM). The present study in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821347/ https://www.ncbi.nlm.nih.gov/pubmed/33495825 http://dx.doi.org/10.3892/mmr.2021.11840 |
_version_ | 1783639404468764672 |
---|---|
author | Fang, Xin Liu, Lihua Zhou, Shaoqiong Zhu, Mengen Wang, Bin |
author_facet | Fang, Xin Liu, Lihua Zhou, Shaoqiong Zhu, Mengen Wang, Bin |
author_sort | Fang, Xin |
collection | PubMed |
description | In diabetic animal models, high plasma/tissue levels of methylglyoxal (MG) are implicated in atherosclerosis. N-acetylcysteine (NAC) is a cysteine prodrug that replenishes intracellular glutathione (GSH) levels, which can increase the elimination of MG in diabetes mellitus (DM). The present study investigated the anti-atherosclerotic role of NAC in DM and aimed to determine whether the mechanism involved GSH-dependent MG elimination in the aorta. Apolipoprotein-E knockdown (ApoE(−/−)) mice injected with streptozotocin for 5 days exhibited enhanced atherosclerotic plaque size in the aortic root; notably, a high-lipid diet aggravated this alteration. NAC treatment in the drinking water for 12 weeks decreased the size of the atherosclerotic lesion, which was associated with a reduction in MG-dicarbonyl stress and oxidative stress, as indicated by decreased serum malondialdehyde levels, and increased superoxide dismutase-1 and glutathione peroxidase-1 levels in the diabetic aorta. Endothelial damage was also corrected by NAC, as indicated by an increase in the expression levels of phosphorylated (p-)Akt and p-endothelial nitric oxide synthase (eNOS) in the aorta, as well as nitric oxide (NO) in the serum. In addition, MG-treated human umbilical vein endothelial cells (HUVECs) exhibited increased reactive oxygen species and decreased antioxidant enzyme expression levels. NAC treatment corrected the alteration in HUVECs induced by MG, whereas the protective role of NAC was blocked via inhibition of GSH. These findings indicated that the diabetic aorta was more susceptible to atherosclerotic lesions compared with non-diabetic ApoE(−/−) mice. Furthermore, NAC may offer protection against atherosclerotic development in DM by altering aortic and systemic responses via correcting GSH-dependent MG elimination, leading to decreased oxidative stress and restoration of the p-Akt/p-eNOS pathway in the aorta. |
format | Online Article Text |
id | pubmed-7821347 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-78213472021-01-25 N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice Fang, Xin Liu, Lihua Zhou, Shaoqiong Zhu, Mengen Wang, Bin Mol Med Rep Articles In diabetic animal models, high plasma/tissue levels of methylglyoxal (MG) are implicated in atherosclerosis. N-acetylcysteine (NAC) is a cysteine prodrug that replenishes intracellular glutathione (GSH) levels, which can increase the elimination of MG in diabetes mellitus (DM). The present study investigated the anti-atherosclerotic role of NAC in DM and aimed to determine whether the mechanism involved GSH-dependent MG elimination in the aorta. Apolipoprotein-E knockdown (ApoE(−/−)) mice injected with streptozotocin for 5 days exhibited enhanced atherosclerotic plaque size in the aortic root; notably, a high-lipid diet aggravated this alteration. NAC treatment in the drinking water for 12 weeks decreased the size of the atherosclerotic lesion, which was associated with a reduction in MG-dicarbonyl stress and oxidative stress, as indicated by decreased serum malondialdehyde levels, and increased superoxide dismutase-1 and glutathione peroxidase-1 levels in the diabetic aorta. Endothelial damage was also corrected by NAC, as indicated by an increase in the expression levels of phosphorylated (p-)Akt and p-endothelial nitric oxide synthase (eNOS) in the aorta, as well as nitric oxide (NO) in the serum. In addition, MG-treated human umbilical vein endothelial cells (HUVECs) exhibited increased reactive oxygen species and decreased antioxidant enzyme expression levels. NAC treatment corrected the alteration in HUVECs induced by MG, whereas the protective role of NAC was blocked via inhibition of GSH. These findings indicated that the diabetic aorta was more susceptible to atherosclerotic lesions compared with non-diabetic ApoE(−/−) mice. Furthermore, NAC may offer protection against atherosclerotic development in DM by altering aortic and systemic responses via correcting GSH-dependent MG elimination, leading to decreased oxidative stress and restoration of the p-Akt/p-eNOS pathway in the aorta. D.A. Spandidos 2021-03 2021-01-13 /pmc/articles/PMC7821347/ /pubmed/33495825 http://dx.doi.org/10.3892/mmr.2021.11840 Text en Copyright: © Fang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Fang, Xin Liu, Lihua Zhou, Shaoqiong Zhu, Mengen Wang, Bin N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title | N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title_full | N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title_fullStr | N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title_full_unstemmed | N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title_short | N-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
title_sort | n-acetylcysteine inhibits atherosclerosis by correcting glutathione-dependent methylglyoxal elimination and dicarbonyl/oxidative stress in the aorta of diabetic mice |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821347/ https://www.ncbi.nlm.nih.gov/pubmed/33495825 http://dx.doi.org/10.3892/mmr.2021.11840 |
work_keys_str_mv | AT fangxin nacetylcysteineinhibitsatherosclerosisbycorrectingglutathionedependentmethylglyoxaleliminationanddicarbonyloxidativestressintheaortaofdiabeticmice AT liulihua nacetylcysteineinhibitsatherosclerosisbycorrectingglutathionedependentmethylglyoxaleliminationanddicarbonyloxidativestressintheaortaofdiabeticmice AT zhoushaoqiong nacetylcysteineinhibitsatherosclerosisbycorrectingglutathionedependentmethylglyoxaleliminationanddicarbonyloxidativestressintheaortaofdiabeticmice AT zhumengen nacetylcysteineinhibitsatherosclerosisbycorrectingglutathionedependentmethylglyoxaleliminationanddicarbonyloxidativestressintheaortaofdiabeticmice AT wangbin nacetylcysteineinhibitsatherosclerosisbycorrectingglutathionedependentmethylglyoxaleliminationanddicarbonyloxidativestressintheaortaofdiabeticmice |