Cargando…

Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway

BACKGROUND: Morbidity and mortality remain high for ischemic stroke victims, and at present these patients lack effective neuroprotective agents, which improve the cure rate. In recent years, studies have shown that pelargonidin has many biological actions. However, few studies are available regardi...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Kong, Chen, Miancong, Zheng, Hua, Li, Chuanzi, Yang, Fan, Niu, Qian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821419/
https://www.ncbi.nlm.nih.gov/pubmed/33552591
http://dx.doi.org/10.1515/tnsci-2021-0006
Descripción
Sumario:BACKGROUND: Morbidity and mortality remain high for ischemic stroke victims, and at present these patients lack effective neuroprotective agents, which improve the cure rate. In recent years, studies have shown that pelargonidin has many biological actions. However, few studies are available regarding the pelargonidin treatment of cerebral ischemia. METHODS: The rat middle cerebral artery occlusion (MCAO) model was established to investigate the neuroprotective effect of pelargonidin on cerebral ischemia/reperfusion injury. Reperfusion was performed 2 h after ischemia; magnetic resonance imaging (MRI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining were used to measure the volume of cerebral ischemia. Both modified neurological severity scores (mNSSs) and Morris water maze test were used to assess the neurological functions. ELISA was applied to determine the levels of TNF-α, TGF-β, IL-6, IL-10, MDA, and SOD. The expression of Nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) protein in brain tissue was measured by immunofluorescence and Western blot assays. RESULTS: The results showed that pelargonidin could effectively reduce the volume of cerebral ischemia and improve the neurological function in MCAO rats, thereby improving memory and learning ability. With the corresponding decreases in the expression of TNF-α, TGF-β, IL-6, and MDA, the level of IL-10 and SOD increased and also promoted the nuclear metastasis of Nrf2 and the expression of HO-1 in ischemic brain tissues. CONCLUSIONS: Our data demonstrated that pelargonidin ameliorated neurological function deficits in MCAO rats, and its potential mechanism of action was associated with overexpression of the Nrf2/HO-1-signaling pathway. This study will provide a new approach to treat cerebral ischemia/reperfusion injury.