Cargando…
Predicting thromboembolic complications in COVID-19 ICU patients using machine learning
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is a challenge for intensive care units (ICU) in part due to the failure to identify risks for patients early and the inability to render an accurate prognosis. Previous reports suggest a strong association between hypercoagulability and p...
Autores principales: | van de Sande, Davy, van Genderen, Michel E., Rosman, Babette, Diether, Maren, Endeman, Henrik, van den Akker, Johannes P. C., Ludwig, Martijn, Huiskens, Joost, Gommers, Diederik, van Bommel, Jasper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Whioce Publishing Pte. Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821745/ https://www.ncbi.nlm.nih.gov/pubmed/33501388 |
Ejemplares similares
-
Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit
por: van de Sande, Davy, et al.
Publicado: (2021) -
Generating insights in uncharted territories: real-time learning from data in critically ill patients–an implementer report
por: van de Sande, Davy, et al.
Publicado: (2021) -
Algorithmic fairness audits in intensive care medicine: artificial intelligence for all?
por: van de Sande, Davy, et al.
Publicado: (2022) -
Developing, implementing and governing artificial intelligence in medicine: a step-by-step approach to prevent an artificial intelligence winter
por: van de Sande, Davy, et al.
Publicado: (2022) -
Progressive respiratory failure in COVID-19: a hypothesis
por: Endeman, Henrik, et al.
Publicado: (2020)