Cargando…
Breaking medical data sharing boundaries by using synthesized radiographs
Computer vision (CV) has the potential to change medicine fundamentally. Expert knowledge provided by CV can enhance diagnosis. Unfortunately, existing algorithms often remain below expectations, as databases used for training are usually too small, incomplete, and heterogeneous in quality. Moreover...
Autores principales: | Han, Tianyu, Nebelung, Sven, Haarburger, Christoph, Horst, Nicolas, Reinartz, Sebastian, Merhof, Dorit, Kiessling, Fabian, Schulz, Volkmar, Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821879/ https://www.ncbi.nlm.nih.gov/pubmed/33268370 http://dx.doi.org/10.1126/sciadv.abb7973 |
Ejemplares similares
-
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
por: Han, Tianyu, et al.
Publicado: (2021) -
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2020) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2021) -
Robustness of Radiomics for Survival Prediction of Brain Tumor Patients Depending on Resection Status
por: Weninger, Leon, et al.
Publicado: (2019) -
Multiphase CT-based prediction of Child-Pugh classification: a machine learning approach
por: Thüring, Johannes, et al.
Publicado: (2020)