Cargando…

Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion

Cilia are hair-like organelles, present in arrays that collectively beat to generate flow. Given their small size and consequent low Reynolds numbers, asymmetric motions are necessary to create a net flow. Here, we developed an array of six soft robotic cilia, which are individually addressable, to...

Descripción completa

Detalles Bibliográficos
Autores principales: Milana, Edoardo, Zhang, Rongjing, Vetrano, Maria Rosaria, Peerlinck, Sam, De Volder, Michael, Onck, Patrick R., Reynaerts, Dominiek, Gorissen, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821886/
https://www.ncbi.nlm.nih.gov/pubmed/33268359
http://dx.doi.org/10.1126/sciadv.abd2508
_version_ 1783639517681418240
author Milana, Edoardo
Zhang, Rongjing
Vetrano, Maria Rosaria
Peerlinck, Sam
De Volder, Michael
Onck, Patrick R.
Reynaerts, Dominiek
Gorissen, Benjamin
author_facet Milana, Edoardo
Zhang, Rongjing
Vetrano, Maria Rosaria
Peerlinck, Sam
De Volder, Michael
Onck, Patrick R.
Reynaerts, Dominiek
Gorissen, Benjamin
author_sort Milana, Edoardo
collection PubMed
description Cilia are hair-like organelles, present in arrays that collectively beat to generate flow. Given their small size and consequent low Reynolds numbers, asymmetric motions are necessary to create a net flow. Here, we developed an array of six soft robotic cilia, which are individually addressable, to both mimic nature’s symmetry-breaking mechanisms and control asymmetries to study their influence on fluid propulsion. Our experimental tests are corroborated with fluid dynamics simulations, where we find a good agreement between both and show how the kymographs of the flow are related to the phase shift of the metachronal waves. Compared to synchronous beating, we report a 50% increase of net flow speed when cilia move in an antiplectic wave with phase shift of −π/3 and a decrease for symplectic waves. Furthermore, we observe the formation of traveling vortices in the direction of the wave when metachrony is applied.
format Online
Article
Text
id pubmed-7821886
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-78218862021-01-29 Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion Milana, Edoardo Zhang, Rongjing Vetrano, Maria Rosaria Peerlinck, Sam De Volder, Michael Onck, Patrick R. Reynaerts, Dominiek Gorissen, Benjamin Sci Adv Research Articles Cilia are hair-like organelles, present in arrays that collectively beat to generate flow. Given their small size and consequent low Reynolds numbers, asymmetric motions are necessary to create a net flow. Here, we developed an array of six soft robotic cilia, which are individually addressable, to both mimic nature’s symmetry-breaking mechanisms and control asymmetries to study their influence on fluid propulsion. Our experimental tests are corroborated with fluid dynamics simulations, where we find a good agreement between both and show how the kymographs of the flow are related to the phase shift of the metachronal waves. Compared to synchronous beating, we report a 50% increase of net flow speed when cilia move in an antiplectic wave with phase shift of −π/3 and a decrease for symplectic waves. Furthermore, we observe the formation of traveling vortices in the direction of the wave when metachrony is applied. American Association for the Advancement of Science 2020-12-02 /pmc/articles/PMC7821886/ /pubmed/33268359 http://dx.doi.org/10.1126/sciadv.abd2508 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Milana, Edoardo
Zhang, Rongjing
Vetrano, Maria Rosaria
Peerlinck, Sam
De Volder, Michael
Onck, Patrick R.
Reynaerts, Dominiek
Gorissen, Benjamin
Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title_full Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title_fullStr Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title_full_unstemmed Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title_short Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion
title_sort metachronal patterns in artificial cilia for low reynolds number fluid propulsion
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821886/
https://www.ncbi.nlm.nih.gov/pubmed/33268359
http://dx.doi.org/10.1126/sciadv.abd2508
work_keys_str_mv AT milanaedoardo metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT zhangrongjing metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT vetranomariarosaria metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT peerlincksam metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT devoldermichael metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT onckpatrickr metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT reynaertsdominiek metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion
AT gorissenbenjamin metachronalpatternsinartificialciliaforlowreynoldsnumberfluidpropulsion