Cargando…
Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence
Metered dose inhalers (MDIs) are one of the most common device types for delivering inhaled therapies. However, there are several technical challenges in development and drug delivery of these medications. In particular, suspension-based MDIs are susceptible to suspension heterogeneity, in vitro dru...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822085/ https://www.ncbi.nlm.nih.gov/pubmed/33500616 http://dx.doi.org/10.2147/COPD.S274846 |
_version_ | 1783639558237192192 |
---|---|
author | Usmani, Omar S Roche, Nicolas Jenkins, Martin Stjepanovic, Neda Mack, Peter De Backer, Wilfried |
author_facet | Usmani, Omar S Roche, Nicolas Jenkins, Martin Stjepanovic, Neda Mack, Peter De Backer, Wilfried |
author_sort | Usmani, Omar S |
collection | PubMed |
description | Metered dose inhalers (MDIs) are one of the most common device types for delivering inhaled therapies. However, there are several technical challenges in development and drug delivery of these medications. In particular, suspension-based MDIs are susceptible to suspension heterogeneity, in vitro drug–drug interactions, and patient handling errors, which may all affect drug delivery. To overcome these challenges, new formulation approaches are required. The Aerosphere(TM) inhaler, formulated using co-suspension delivery technology, combines drug crystals with porous phospholipid particles to create stable, homogenous suspensions that dissolve once they reach the airways. Two combination therapies using this technology have been developed for the treatment of COPD: glycopyrrolate/formoterol fumarate (GFF MDI; dual combination) and budesonide/glycopyrrolate/formoterol fumarate (BGF MDI; triple combination). Here, we review the evidence with a focus on studies assessing dose delivery, lung deposition, and effects on airway geometry. In vitro assessments have demonstrated that the Aerosphere inhaler provides consistent dose delivery, even in the presence of simulated patient handling errors. Combination therapies delivered with this technology also show a consistent fine particle fraction (FPF) and an optimal particle size distribution for delivery to the central and peripheral airways even when multiple drugs are delivered via the same inhaler. Studies using gamma scintigraphy and functional respiratory imaging have demonstrated that GFF MDI is effectively deposited in the central and peripheral airways, and provides clinically meaningful benefits on airway volume and resistance throughout the lung. Overall, studies suggest that the Aerosphere inhaler, formulated using co-suspension delivery technology, may offer advantages over traditional formulations, including consistent delivery of multiple components across patient handling conditions, optimal particle size and FPF, and effective delivery to the central and peripheral airways. Future studies may provide additional evidence to further characterize the clinical benefits of these technical improvements in MDI drug delivery. |
format | Online Article Text |
id | pubmed-7822085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-78220852021-01-25 Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence Usmani, Omar S Roche, Nicolas Jenkins, Martin Stjepanovic, Neda Mack, Peter De Backer, Wilfried Int J Chron Obstruct Pulmon Dis Review Metered dose inhalers (MDIs) are one of the most common device types for delivering inhaled therapies. However, there are several technical challenges in development and drug delivery of these medications. In particular, suspension-based MDIs are susceptible to suspension heterogeneity, in vitro drug–drug interactions, and patient handling errors, which may all affect drug delivery. To overcome these challenges, new formulation approaches are required. The Aerosphere(TM) inhaler, formulated using co-suspension delivery technology, combines drug crystals with porous phospholipid particles to create stable, homogenous suspensions that dissolve once they reach the airways. Two combination therapies using this technology have been developed for the treatment of COPD: glycopyrrolate/formoterol fumarate (GFF MDI; dual combination) and budesonide/glycopyrrolate/formoterol fumarate (BGF MDI; triple combination). Here, we review the evidence with a focus on studies assessing dose delivery, lung deposition, and effects on airway geometry. In vitro assessments have demonstrated that the Aerosphere inhaler provides consistent dose delivery, even in the presence of simulated patient handling errors. Combination therapies delivered with this technology also show a consistent fine particle fraction (FPF) and an optimal particle size distribution for delivery to the central and peripheral airways even when multiple drugs are delivered via the same inhaler. Studies using gamma scintigraphy and functional respiratory imaging have demonstrated that GFF MDI is effectively deposited in the central and peripheral airways, and provides clinically meaningful benefits on airway volume and resistance throughout the lung. Overall, studies suggest that the Aerosphere inhaler, formulated using co-suspension delivery technology, may offer advantages over traditional formulations, including consistent delivery of multiple components across patient handling conditions, optimal particle size and FPF, and effective delivery to the central and peripheral airways. Future studies may provide additional evidence to further characterize the clinical benefits of these technical improvements in MDI drug delivery. Dove 2021-01-18 /pmc/articles/PMC7822085/ /pubmed/33500616 http://dx.doi.org/10.2147/COPD.S274846 Text en © 2021 Usmani et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Review Usmani, Omar S Roche, Nicolas Jenkins, Martin Stjepanovic, Neda Mack, Peter De Backer, Wilfried Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title | Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title_full | Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title_fullStr | Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title_full_unstemmed | Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title_short | Consistent Pulmonary Drug Delivery with Whole Lung Deposition Using the Aerosphere Inhaler: A Review of the Evidence |
title_sort | consistent pulmonary drug delivery with whole lung deposition using the aerosphere inhaler: a review of the evidence |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822085/ https://www.ncbi.nlm.nih.gov/pubmed/33500616 http://dx.doi.org/10.2147/COPD.S274846 |
work_keys_str_mv | AT usmaniomars consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence AT rochenicolas consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence AT jenkinsmartin consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence AT stjepanovicneda consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence AT mackpeter consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence AT debackerwilfried consistentpulmonarydrugdeliverywithwholelungdepositionusingtheaerosphereinhalerareviewoftheevidence |