Cargando…

Machine Learning Algorithms for Prediction of the Quality of Transmission in Optical Networks

Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing network traffic prompts an introduction of new solutions that allow increasing the transmission speed without significant increase of the service cost. In order to achieve this objective simpler and faster, DWDM network...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozdrowski, Stanisław, Cichosz, Paweł, Paziewski, Piotr, Sujecki, Sławomir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822106/
https://www.ncbi.nlm.nih.gov/pubmed/33375082
http://dx.doi.org/10.3390/e23010007
Descripción
Sumario:Increasing demand in the backbone Dense Wavelength Division (DWDM) Multiplexing network traffic prompts an introduction of new solutions that allow increasing the transmission speed without significant increase of the service cost. In order to achieve this objective simpler and faster, DWDM network reconfiguration procedures are needed. A key problem that is intrinsically related to network reconfiguration is that of the quality of transmission assessment. Thus, in this contribution a Machine Learning (ML) based method for an assessment of the quality of transmission is proposed. The proposed ML methods use a database, which was created only on the basis of information that is available to a DWDM network operator via the DWDM network control plane. Several types of ML classifiers are proposed and their performance is tested and compared for two real DWDM network topologies. The results obtained are promising and motivate further research.