Cargando…
Machine Learning-Based Automatic Classification of Video Recorded Neonatal Manipulations and Associated Physiological Parameters: A Feasibility Study
Our objective in this study was to determine if machine learning (ML) can automatically recognize neonatal manipulations, along with associated changes in physiological parameters. A retrospective observational study was carried out in two Neonatal Intensive Care Units (NICUs) between December 2019...
Autores principales: | Singh, Harpreet, Kusuda, Satoshi, McAdams, Ryan M., Gupta, Shubham, Kalra, Jayant, Kaur, Ravneet, Das, Ritu, Anand, Saket, Pandey, Ashish Kumar, Cho, Su Jin, Saluja, Satish, Boutilier, Justin J., Saria, Suchi, Palma, Jonathan, Kaur, Avneet, Yadav, Gautam, Sun, Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822162/ https://www.ncbi.nlm.nih.gov/pubmed/33375101 http://dx.doi.org/10.3390/children8010001 |
Ejemplares similares
-
Development and validation of high definition phenotype-based mortality prediction in critical care units
por: Sun, Yao, et al.
Publicado: (2021) -
Development of data dictionary for neonatal intensive care unit: advancement towards a better critical care unit
por: Singh, Harpreet, et al.
Publicado: (2019) -
Designing a bed-side system for predicting length of stay in a neonatal intensive care unit
por: Singh, Harpreet, et al.
Publicado: (2021) -
iNICU – Integrated Neonatal Care Unit: Capturing Neonatal Journey in an Intelligent Data Way
por: Singh, Harpreet, et al.
Publicado: (2017) -
Rare blood donor program in the country: Right time to start
por: Kaur, Ravneet, et al.
Publicado: (2012)