Cargando…
A reliable algorithm to compute the approximate solution of KdV-type partial differential equations of order seven
The approximate solution of KdV-type partial differential equations of order seven is presented. The algorithm based on one-dimensional Haar wavelet collocation method is adapted for this purpose. One-dimensional Haar wavelet collocation method is verified on Lax equation, Sawada-Kotera-Ito equation...
Autores principales: | Saleem, Sidra, Hussain, Malik Zawwar, Aziz, Imran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822283/ https://www.ncbi.nlm.nih.gov/pubmed/33481786 http://dx.doi.org/10.1371/journal.pone.0244027 |
Ejemplares similares
-
An approximation of one-dimensional nonlinear Kortweg de Vries equation of order nine
por: Saleem, Sidra, et al.
Publicado: (2022) -
Padé approximants and closed form solutions of the KdV and MKdV equations
por: Lambert, F
Publicado: (1979) -
Optimal system and dynamics of optical soliton solutions for the Schamel KdV equation
por: Hussain, A., et al.
Publicado: (2023) -
Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation
por: Wang, Gang wei, et al.
Publicado: (2014) -
First-order perturbed KdV solitons
por: Kraenkel, R A
Publicado: (1998)