Cargando…
Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods
Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangj...
Autores principales: | Liu, Junzhao, Zhang, Dong, Tang, Qiuju, Xu, Hongbin, Huang, Shanheng, Shang, Dan, Liu, Ruxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822302/ https://www.ncbi.nlm.nih.gov/pubmed/33481880 http://dx.doi.org/10.1371/journal.pone.0245525 |
Ejemplares similares
-
Combining the multivariate statistics and dual stable isotopes methods for nitrogen source identification in coastal rivers of Hangzhou Bay, China
por: Zhou, Jia, et al.
Publicado: (2022) -
Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China
por: Chen, Jiabo, et al.
Publicado: (2016) -
Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea
por: Mamun, Md, et al.
Publicado: (2021) -
Analyses on the Temporal and Spatial Characteristics of Water Quality in a Seagoing River Using Multivariate Statistical Techniques: A Case Study in the Duliujian River, China
por: Sun, Xuewei, et al.
Publicado: (2019) -
A multivariate statistical approach and water quality index for water quality assessment for the Rokel river in Sierra Leone
por: Barrie, A., et al.
Publicado: (2023)