Cargando…

Effect of Treadmill Exercise and Probiotic Ingestion on Motor Coordination and Brain Activity in Adolescent Mice

High-intensity exercise can lead to chronic fatigue, which reduces athletic performance. On the contrary, probiotic supplements have many health benefits, including improvement of gastrointestinal health and immunoregulation. However, the effects of probiotics combined with exercise interventions on...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Junechul, Yoon, Bo-Eun, Jeon, Yong Kyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822428/
https://www.ncbi.nlm.nih.gov/pubmed/33374692
http://dx.doi.org/10.3390/healthcare9010007
Descripción
Sumario:High-intensity exercise can lead to chronic fatigue, which reduces athletic performance. On the contrary, probiotic supplements have many health benefits, including improvement of gastrointestinal health and immunoregulation. However, the effects of probiotics combined with exercise interventions on motor functions and brain activity have not been fully explored. Therefore, this study aimed to identify the effects of probiotic supplements and aerobic exercise on motor function, immune response, and exercise intensity and probiotic ingestion. After four weeks of intervention, the motor functions were assessed by rotarod test, then the levels of cytokines, gamma-aminobutyric acid (GABA), and glutamate were detected. The improvement caused by the intake of probiotics in the moderate-intensity exercise group and the non-exercise group in the accelerating mode rotarod was significant (p = 0.038, p < 0.001, respectively). In constant-speed mode, the moderate-intensity exercise group with probiotic ingestion recorded longer runs than the corresponding non-exercise group (p = 0.023), and the improvement owing to probiotics was significant in all groups—non-exercise, moderate, and high-intensity (p = 0.036, p = 0.036, p = 0.012, respectively). The concentrations of inflammatory cytokines were lower, whereas GABA was higher in the probiotics-ingested group. Taken together, exercise and probiotics in adolescence could positively affect brain and motor function.