Cargando…
In-Series U-Net Network to 3D Tumor Image Reconstruction for Liver Hepatocellular Carcinoma Recognition
Cancer is one of the common diseases. Quantitative biomarkers extracted from standard-of-care computed tomography (CT) scan can create a robust clinical decision tool for the diagnosis of hepatocellular carcinoma (HCC). According to the current clinical methods, the situation usually accounts for hi...
Autores principales: | Chen, Wen-Fan, Ou, Hsin-You, Liu, Keng-Hao, Li, Zhi-Yun, Liao, Chien-Chang, Wang, Shao-Yu, Huang, Wen, Cheng, Yu-Fan, Pan, Cheng-Tang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822491/ https://www.ncbi.nlm.nih.gov/pubmed/33374672 http://dx.doi.org/10.3390/diagnostics11010011 |
Ejemplares similares
-
Development of Novel Residual-Dense-Attention (RDA) U-Net Network Architecture for Hepatocellular Carcinoma Segmentation
por: Chen, Wen-Fan, et al.
Publicado: (2022) -
Recognition Rate Advancement and Data Error Improvement of Pathology Cutting with H-DenseUNet for Hepatocellular Carcinoma Image
por: Chen, Wen-Fan, et al.
Publicado: (2021) -
Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
por: Lee, Ming-Chan, et al.
Publicado: (2023) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
A Scoring System for Predicting Microvascular Invasion in Hepatocellular Carcinoma Based on Quantitative Functional MRI
por: Liao, Chien-Chang, et al.
Publicado: (2022)