Cargando…

Crowding in the Eye Lens: Modeling the Multisubunit Protein β-Crystallin with a Colloidal Approach

We present a multiscale characterization of aqueous solutions of the bovine eye lens protein β(H) crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a co...

Descripción completa

Detalles Bibliográficos
Autores principales: Roosen-Runge, Felix, Gulotta, Alessandro, Bucciarelli, Saskia, Casal-Dujat, Lucía, Garting, Tommy, Skar-Gislinge, Nicholas, Obiols-Rabasa, Marc, Farago, Bela, Zaccarelli, Emanuela, Schurtenberger, Peter, Stradner, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Biophysical Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822730/
https://www.ncbi.nlm.nih.gov/pubmed/33189682
http://dx.doi.org/10.1016/j.bpj.2020.10.035
Descripción
Sumario:We present a multiscale characterization of aqueous solutions of the bovine eye lens protein β(H) crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.