Cargando…
Association of AI quantified COVID-19 chest CT and patient outcome
PURPOSE: Severity scoring is a key step in managing patients with COVID-19 pneumonia. However, manual quantitative analysis by radiologists is a time-consuming task, while qualitative evaluation may be fast but highly subjective. This study aims to develop artificial intelligence (AI)-based methods...
Autores principales: | Fang, Xi, Kruger, Uwe, Homayounieh, Fatemeh, Chao, Hanqing, Zhang, Jiajin, Digumarthy, Subba R., Arru, Chiara D., Kalra, Mannudeep K., Yan, Pingkun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822756/ https://www.ncbi.nlm.nih.gov/pubmed/33484428 http://dx.doi.org/10.1007/s11548-020-02299-5 |
Ejemplares similares
-
Integrative analysis for COVID-19 patient outcome prediction
por: Chao, Hanqing, et al.
Publicado: (2021) -
Chest CT practice and protocols for COVID-19 from radiation dose management perspective
por: Kalra, Mannudeep K., et al.
Publicado: (2020) -
Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography
por: Ebrahimian, Shadi, et al.
Publicado: (2021) -
Deploying Clinical Process Improvement Strategies to Reduce Motion Artifacts and Expiratory Phase Scanning in Chest CT
por: Doda Khera, Ruhani, et al.
Publicado: (2019) -
Clinical and imaging features predict mortality in COVID-19 infection in Iran
por: Homayounieh, Fatemeh, et al.
Publicado: (2020)