Cargando…
A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
PURPOSE: Deep learning can be used for improving the performance of computer-aided detection (CADe) in various medical imaging tasks. However, in computed tomographic (CT) colonography, the performance is limited by the relatively small size and the variety of the available training datasets. Our pu...
Autores principales: | Uemura, Tomoki, Näppi, Janne J., Ryu, Yasuji, Watari, Chinatsu, Kamiya, Tohru, Yoshida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822776/ https://www.ncbi.nlm.nih.gov/pubmed/33150471 http://dx.doi.org/10.1007/s11548-020-02275-z |
Ejemplares similares
-
Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
por: Uemura, Tomoki, et al.
Publicado: (2021) -
U-survival for prognostic prediction of disease progression and mortality of patients with COVID-19
por: Näppi, Janne J., et al.
Publicado: (2021) -
Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study
por: Tachibana, Rie, et al.
Publicado: (2022) -
Colorectal Laterally Spreading Tumors by Computed Tomographic Colonography
por: Kakugawa, Yasuo, et al.
Publicado: (2013) -
Iatrogenic Colonic Perforation due to Computed Tomographic Colonography
por: Kato, Takashi, et al.
Publicado: (2015)