Cargando…
Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models
PURPOSE: We investigated the parameter configuration in the automatic liver and tumor segmentation using a convolutional neural network based on 2.5D model. The implementation of 2.5D model shows promising results since it allows the network to have a deeper and wider network architecture while stil...
Autores principales: | Wardhana, Girindra, Naghibi, Hamid, Sirmacek, Beril, Abayazid, Momen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822806/ https://www.ncbi.nlm.nih.gov/pubmed/33219906 http://dx.doi.org/10.1007/s11548-020-02292-y |
Ejemplares similares
-
Development of a thermal model for irreversible electroporation: an approach to estimate and optimize the IRE protocols
por: Wardhana, Girindra, et al.
Publicado: (2021) -
Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation
por: Wardhana, Girindra, et al.
Publicado: (2022) -
Sensor Fusion and Convolutional Neural Networks for Indoor Occupancy Prediction Using Multiple Low-Cost Low-Resolution Heat Sensor Data
por: Arvidsson, Simon, et al.
Publicado: (2021) -
A review on recent advances in soft surgical robots for endoscopic applications
por: Gifari, M. Wildan, et al.
Publicado: (2019) -
Adaptive control of a soft pneumatic actuator using experimental characterization data
por: Mak, Yoeko Xavier, et al.
Publicado: (2023)