Cargando…

Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder

In the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouhadjra, Kahina, Lemlikchi, Wahiba, Ferhati, Azedine, Mignard, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822877/
https://www.ncbi.nlm.nih.gov/pubmed/33483564
http://dx.doi.org/10.1038/s41598-020-79069-5
Descripción
Sumario:In the present study, the potato peel waste (PP) was used for the removal of the anionic dye Cibacron Blue P3R from an aqueous solution, activated with phosphoric acid (PPa) and calcined at 800 °C (PPc). The materials were characterized by Scanning Electron Microscope, Energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy. The effects of various experimental parameters (pH, dye concentration, contact time) were also studied. The experimental results have shown that PPc has a greater capacity compared to pp and ppa. The capacity of PP bio-char (PPc) is 270.3 mg g(−1) compared to PP (100 mg g(−1)) and PPa (125 mg g(−1)). Equilibrium experiments at 180 min for all materials were carried out at optimum pH (2.2): 76.41, 88.6 and 94% for PP, PPa and PPc respectively; and the Langmuir models agreed very well with experimental data. The ability of sorbent for the sorption of CB dye follows this order: calcined > activated > native materials. Potato peel biochar (PPc) can be considered a promising adsorbent for removing persistent dyes from water.