Cargando…

A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy

The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semico...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Wei, Yang, Zhen, He, Liangcan, Deng, Liming, Fathi, Parinaz, Zhu, Shoujun, Li, Ling, Shen, Bo, Wang, Zhantong, Jacobson, Orit, Song, Jibin, Zou, Jianhua, Hu, Ping, Wang, Min, Mu, Jing, Cheng, Yaya, Ma, Yuanyuan, Tang, Longguang, Fan, Wenpei, Chen, Xiaoyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822893/
https://www.ncbi.nlm.nih.gov/pubmed/33483518
http://dx.doi.org/10.1038/s41467-020-20860-3
_version_ 1783639730055806976
author Tang, Wei
Yang, Zhen
He, Liangcan
Deng, Liming
Fathi, Parinaz
Zhu, Shoujun
Li, Ling
Shen, Bo
Wang, Zhantong
Jacobson, Orit
Song, Jibin
Zou, Jianhua
Hu, Ping
Wang, Min
Mu, Jing
Cheng, Yaya
Ma, Yuanyuan
Tang, Longguang
Fan, Wenpei
Chen, Xiaoyuan
author_facet Tang, Wei
Yang, Zhen
He, Liangcan
Deng, Liming
Fathi, Parinaz
Zhu, Shoujun
Li, Ling
Shen, Bo
Wang, Zhantong
Jacobson, Orit
Song, Jibin
Zou, Jianhua
Hu, Ping
Wang, Min
Mu, Jing
Cheng, Yaya
Ma, Yuanyuan
Tang, Longguang
Fan, Wenpei
Chen, Xiaoyuan
author_sort Tang, Wei
collection PubMed
description The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O(2) nanoeconomizer pHPFON-NO/O(2) to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O(2) interacts with the acidic tumor microenvironment to release NO for endogenous O(2) conservation; second, it releases O(2) in response to mild photothermal effect to enable exogenous O(2) infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O(2) and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response.
format Online
Article
Text
id pubmed-7822893
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78228932021-01-29 A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy Tang, Wei Yang, Zhen He, Liangcan Deng, Liming Fathi, Parinaz Zhu, Shoujun Li, Ling Shen, Bo Wang, Zhantong Jacobson, Orit Song, Jibin Zou, Jianhua Hu, Ping Wang, Min Mu, Jing Cheng, Yaya Ma, Yuanyuan Tang, Longguang Fan, Wenpei Chen, Xiaoyuan Nat Commun Article The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O(2) nanoeconomizer pHPFON-NO/O(2) to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O(2) interacts with the acidic tumor microenvironment to release NO for endogenous O(2) conservation; second, it releases O(2) in response to mild photothermal effect to enable exogenous O(2) infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O(2) and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. Nature Publishing Group UK 2021-01-22 /pmc/articles/PMC7822893/ /pubmed/33483518 http://dx.doi.org/10.1038/s41467-020-20860-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tang, Wei
Yang, Zhen
He, Liangcan
Deng, Liming
Fathi, Parinaz
Zhu, Shoujun
Li, Ling
Shen, Bo
Wang, Zhantong
Jacobson, Orit
Song, Jibin
Zou, Jianhua
Hu, Ping
Wang, Min
Mu, Jing
Cheng, Yaya
Ma, Yuanyuan
Tang, Longguang
Fan, Wenpei
Chen, Xiaoyuan
A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title_full A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title_fullStr A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title_full_unstemmed A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title_short A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
title_sort hybrid semiconducting organosilica-based o(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822893/
https://www.ncbi.nlm.nih.gov/pubmed/33483518
http://dx.doi.org/10.1038/s41467-020-20860-3
work_keys_str_mv AT tangwei ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT yangzhen ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT heliangcan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT dengliming ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT fathiparinaz ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT zhushoujun ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT liling ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT shenbo ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT wangzhantong ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT jacobsonorit ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT songjibin ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT zoujianhua ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT huping ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT wangmin ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT mujing ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT chengyaya ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT mayuanyuan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT tanglongguang ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT fanwenpei ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT chenxiaoyuan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT tangwei hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT yangzhen hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT heliangcan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT dengliming hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT fathiparinaz hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT zhushoujun hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT liling hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT shenbo hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT wangzhantong hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT jacobsonorit hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT songjibin hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT zoujianhua hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT huping hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT wangmin hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT mujing hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT chengyaya hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT mayuanyuan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT tanglongguang hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT fanwenpei hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy
AT chenxiaoyuan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy