Cargando…
A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy
The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semico...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822893/ https://www.ncbi.nlm.nih.gov/pubmed/33483518 http://dx.doi.org/10.1038/s41467-020-20860-3 |
_version_ | 1783639730055806976 |
---|---|
author | Tang, Wei Yang, Zhen He, Liangcan Deng, Liming Fathi, Parinaz Zhu, Shoujun Li, Ling Shen, Bo Wang, Zhantong Jacobson, Orit Song, Jibin Zou, Jianhua Hu, Ping Wang, Min Mu, Jing Cheng, Yaya Ma, Yuanyuan Tang, Longguang Fan, Wenpei Chen, Xiaoyuan |
author_facet | Tang, Wei Yang, Zhen He, Liangcan Deng, Liming Fathi, Parinaz Zhu, Shoujun Li, Ling Shen, Bo Wang, Zhantong Jacobson, Orit Song, Jibin Zou, Jianhua Hu, Ping Wang, Min Mu, Jing Cheng, Yaya Ma, Yuanyuan Tang, Longguang Fan, Wenpei Chen, Xiaoyuan |
author_sort | Tang, Wei |
collection | PubMed |
description | The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O(2) nanoeconomizer pHPFON-NO/O(2) to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O(2) interacts with the acidic tumor microenvironment to release NO for endogenous O(2) conservation; second, it releases O(2) in response to mild photothermal effect to enable exogenous O(2) infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O(2) and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. |
format | Online Article Text |
id | pubmed-7822893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78228932021-01-29 A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy Tang, Wei Yang, Zhen He, Liangcan Deng, Liming Fathi, Parinaz Zhu, Shoujun Li, Ling Shen, Bo Wang, Zhantong Jacobson, Orit Song, Jibin Zou, Jianhua Hu, Ping Wang, Min Mu, Jing Cheng, Yaya Ma, Yuanyuan Tang, Longguang Fan, Wenpei Chen, Xiaoyuan Nat Commun Article The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O(2) by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O(2) nanoeconomizer pHPFON-NO/O(2) to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O(2) interacts with the acidic tumor microenvironment to release NO for endogenous O(2) conservation; second, it releases O(2) in response to mild photothermal effect to enable exogenous O(2) infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O(2) and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. Nature Publishing Group UK 2021-01-22 /pmc/articles/PMC7822893/ /pubmed/33483518 http://dx.doi.org/10.1038/s41467-020-20860-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Tang, Wei Yang, Zhen He, Liangcan Deng, Liming Fathi, Parinaz Zhu, Shoujun Li, Ling Shen, Bo Wang, Zhantong Jacobson, Orit Song, Jibin Zou, Jianhua Hu, Ping Wang, Min Mu, Jing Cheng, Yaya Ma, Yuanyuan Tang, Longguang Fan, Wenpei Chen, Xiaoyuan A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title | A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title_full | A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title_fullStr | A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title_full_unstemmed | A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title_short | A hybrid semiconducting organosilica-based O(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
title_sort | hybrid semiconducting organosilica-based o(2) nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822893/ https://www.ncbi.nlm.nih.gov/pubmed/33483518 http://dx.doi.org/10.1038/s41467-020-20860-3 |
work_keys_str_mv | AT tangwei ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT yangzhen ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT heliangcan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT dengliming ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT fathiparinaz ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT zhushoujun ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT liling ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT shenbo ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT wangzhantong ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT jacobsonorit ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT songjibin ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT zoujianhua ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT huping ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT wangmin ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT mujing ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT chengyaya ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT mayuanyuan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT tanglongguang ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT fanwenpei ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT chenxiaoyuan ahybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT tangwei hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT yangzhen hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT heliangcan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT dengliming hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT fathiparinaz hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT zhushoujun hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT liling hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT shenbo hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT wangzhantong hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT jacobsonorit hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT songjibin hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT zoujianhua hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT huping hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT wangmin hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT mujing hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT chengyaya hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT mayuanyuan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT tanglongguang hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT fanwenpei hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy AT chenxiaoyuan hybridsemiconductingorganosilicabasedo2nanoeconomizerforondemandsynergisticphotothermallyboostedradiotherapy |