Cargando…

Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction

The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dwyer, Kiera D., Coulombe, Kareen L.K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822956/
https://www.ncbi.nlm.nih.gov/pubmed/33553810
http://dx.doi.org/10.1016/j.bioactmat.2020.12.015
_version_ 1783639745336705024
author Dwyer, Kiera D.
Coulombe, Kareen L.K.
author_facet Dwyer, Kiera D.
Coulombe, Kareen L.K.
author_sort Dwyer, Kiera D.
collection PubMed
description The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
format Online
Article
Text
id pubmed-7822956
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-78229562021-02-04 Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction Dwyer, Kiera D. Coulombe, Kareen L.K. Bioact Mater Article The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI. KeAi Publishing 2021-01-20 /pmc/articles/PMC7822956/ /pubmed/33553810 http://dx.doi.org/10.1016/j.bioactmat.2020.12.015 Text en © 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Dwyer, Kiera D.
Coulombe, Kareen L.K.
Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title_full Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title_fullStr Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title_full_unstemmed Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title_short Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
title_sort cardiac mechanostructure: using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822956/
https://www.ncbi.nlm.nih.gov/pubmed/33553810
http://dx.doi.org/10.1016/j.bioactmat.2020.12.015
work_keys_str_mv AT dwyerkierad cardiacmechanostructureusingmechanicsandanisotropyasinspirationfordevelopingepicardialtherapiesintreatingmyocardialinfarction
AT coulombekareenlk cardiacmechanostructureusingmechanicsandanisotropyasinspirationfordevelopingepicardialtherapiesintreatingmyocardialinfarction