Cargando…

Acoustic Trauma Increases Ribbon Number and Size in Outer Hair Cells of the Mouse Cochlea

Outer hair cells (OHCs) in the mouse cochlea are contacted by up to three type II afferent boutons. On average, only half of these are postsynaptic to presynaptic ribbons. Mice of both sexes were subjected to acoustic trauma that produced a threshold shift of 44.2 ± 9.1 dB 7 days after exposure. Rib...

Descripción completa

Detalles Bibliográficos
Autores principales: Wood, Megan B, Nowak, Nathaniel, Mull, Keira, Goldring, Adam, Lehar, Mohamed, Fuchs, Paul Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822997/
https://www.ncbi.nlm.nih.gov/pubmed/33151428
http://dx.doi.org/10.1007/s10162-020-00777-w
Descripción
Sumario:Outer hair cells (OHCs) in the mouse cochlea are contacted by up to three type II afferent boutons. On average, only half of these are postsynaptic to presynaptic ribbons. Mice of both sexes were subjected to acoustic trauma that produced a threshold shift of 44.2 ± 9.1 dB 7 days after exposure. Ribbon synapses of OHCs were quantified in post-trauma and littermate controls using immunolabeling of CtBP2. Visualization with virtual reality was used to determine 3-D cytoplasmic localization of CtBP2 puncta to the synaptic pole of OHCs. Acoustic trauma was associated with a statistically significant increase in the number of synaptic ribbons per OHC. Serial section TEM was carried out on similarly treated mice. This also showed a significant increase in the number of ribbons in post-trauma OHCs, as well as a significant increase in ribbon volume compared to ribbons in control OHCs. An increase in OHC ribbon synapses after acoustic trauma is a novel observation that has implications for OHC:type II afferent signaling. A mathematical model showed that the observed increase in OHC ribbons considered alone could produce a significant increase in action potentials among type II afferent neurons during strong acoustic stimulation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10162-020-00777-w.