Cargando…
Identification of KIF4A and its effect on the progression of lung adenocarcinoma based on the bioinformatics analysis
Background: Lung adenocarcinoma (LUAD) is the most frequent histological type of lung cancer, and its incidence has displayed an upward trend in recent years. Nevertheless, little is known regarding effective biomarkers for LUAD. Methods: The robust rank aggregation method was used to mine different...
Autores principales: | Song, Yexun, Tang, Wenfang, Li, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823194/ https://www.ncbi.nlm.nih.gov/pubmed/33398330 http://dx.doi.org/10.1042/BSR20203973 |
Ejemplares similares
-
Identification of KIF4A as a pan-cancer diagnostic and prognostic biomarker via bioinformatics analysis and validation in osteosarcoma cell lines
por: Pan, Jiankang, et al.
Publicado: (2021) -
Identification of HMMR as a prognostic biomarker for patients with lung adenocarcinoma via integrated bioinformatics analysis
por: Li, Zhaodong, et al.
Publicado: (2021) -
Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches
por: Jiang, Jing, et al.
Publicado: (2023) -
Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma
por: Guo, Tingting, et al.
Publicado: (2019) -
Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: a comprehensive analysis by multiple bioinformatics methods
por: Sun, Ruiying, et al.
Publicado: (2020)