Cargando…
A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823360/ https://www.ncbi.nlm.nih.gov/pubmed/33375220 http://dx.doi.org/10.3390/jpm11010014 |
_version_ | 1783639817210298368 |
---|---|
author | Abate, Giulia Vezzoli, Marika Polito, Letizia Guaita, Antonio Albani, Diego Marizzoni, Moira Garrafa, Emirena Marengoni, Alessandra Forloni, Gianluigi Frisoni, Giovanni B. Cummings, Jeffrey L. Memo, Maurizio Uberti, Daniela |
author_facet | Abate, Giulia Vezzoli, Marika Polito, Letizia Guaita, Antonio Albani, Diego Marizzoni, Moira Garrafa, Emirena Marengoni, Alessandra Forloni, Gianluigi Frisoni, Giovanni B. Cummings, Jeffrey L. Memo, Maurizio Uberti, Daniela |
author_sort | Abate, Giulia |
collection | PubMed |
description | Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation recognized by the antibody 2D3A8, also named Unfolded p53 (U-p53(2D3A8+)), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p53(2D3A8+) plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ(+)—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p53(2D3A8+) plasma level as a promising additional candidate blood-based biomarker for AD. |
format | Online Article Text |
id | pubmed-7823360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78233602021-01-24 A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages Abate, Giulia Vezzoli, Marika Polito, Letizia Guaita, Antonio Albani, Diego Marizzoni, Moira Garrafa, Emirena Marengoni, Alessandra Forloni, Gianluigi Frisoni, Giovanni B. Cummings, Jeffrey L. Memo, Maurizio Uberti, Daniela J Pers Med Article Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation recognized by the antibody 2D3A8, also named Unfolded p53 (U-p53(2D3A8+)), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p53(2D3A8+) plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ(+)—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p53(2D3A8+) plasma level as a promising additional candidate blood-based biomarker for AD. MDPI 2020-12-26 /pmc/articles/PMC7823360/ /pubmed/33375220 http://dx.doi.org/10.3390/jpm11010014 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abate, Giulia Vezzoli, Marika Polito, Letizia Guaita, Antonio Albani, Diego Marizzoni, Moira Garrafa, Emirena Marengoni, Alessandra Forloni, Gianluigi Frisoni, Giovanni B. Cummings, Jeffrey L. Memo, Maurizio Uberti, Daniela A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title | A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title_full | A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title_fullStr | A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title_full_unstemmed | A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title_short | A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages |
title_sort | conformation variant of p53 combined with machine learning identifies alzheimer disease in preclinical and prodromal stages |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823360/ https://www.ncbi.nlm.nih.gov/pubmed/33375220 http://dx.doi.org/10.3390/jpm11010014 |
work_keys_str_mv | AT abategiulia aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT vezzolimarika aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT politoletizia aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT guaitaantonio aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT albanidiego aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT marizzonimoira aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT garrafaemirena aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT marengonialessandra aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT forlonigianluigi aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT frisonigiovannib aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT cummingsjeffreyl aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT memomaurizio aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT ubertidaniela aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT abategiulia conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT vezzolimarika conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT politoletizia conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT guaitaantonio conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT albanidiego conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT marizzonimoira conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT garrafaemirena conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT marengonialessandra conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT forlonigianluigi conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT frisonigiovannib conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT cummingsjeffreyl conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT memomaurizio conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages AT ubertidaniela conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages |