Cargando…

A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages

Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds...

Descripción completa

Detalles Bibliográficos
Autores principales: Abate, Giulia, Vezzoli, Marika, Polito, Letizia, Guaita, Antonio, Albani, Diego, Marizzoni, Moira, Garrafa, Emirena, Marengoni, Alessandra, Forloni, Gianluigi, Frisoni, Giovanni B., Cummings, Jeffrey L., Memo, Maurizio, Uberti, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823360/
https://www.ncbi.nlm.nih.gov/pubmed/33375220
http://dx.doi.org/10.3390/jpm11010014
_version_ 1783639817210298368
author Abate, Giulia
Vezzoli, Marika
Polito, Letizia
Guaita, Antonio
Albani, Diego
Marizzoni, Moira
Garrafa, Emirena
Marengoni, Alessandra
Forloni, Gianluigi
Frisoni, Giovanni B.
Cummings, Jeffrey L.
Memo, Maurizio
Uberti, Daniela
author_facet Abate, Giulia
Vezzoli, Marika
Polito, Letizia
Guaita, Antonio
Albani, Diego
Marizzoni, Moira
Garrafa, Emirena
Marengoni, Alessandra
Forloni, Gianluigi
Frisoni, Giovanni B.
Cummings, Jeffrey L.
Memo, Maurizio
Uberti, Daniela
author_sort Abate, Giulia
collection PubMed
description Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation recognized by the antibody 2D3A8, also named Unfolded p53 (U-p53(2D3A8+)), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p53(2D3A8+) plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ(+)—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p53(2D3A8+) plasma level as a promising additional candidate blood-based biomarker for AD.
format Online
Article
Text
id pubmed-7823360
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78233602021-01-24 A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages Abate, Giulia Vezzoli, Marika Polito, Letizia Guaita, Antonio Albani, Diego Marizzoni, Moira Garrafa, Emirena Marengoni, Alessandra Forloni, Gianluigi Frisoni, Giovanni B. Cummings, Jeffrey L. Memo, Maurizio Uberti, Daniela J Pers Med Article Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease management. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation recognized by the antibody 2D3A8, also named Unfolded p53 (U-p53(2D3A8+)), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p53(2D3A8+) plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ(+)—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p53(2D3A8+) plasma level as a promising additional candidate blood-based biomarker for AD. MDPI 2020-12-26 /pmc/articles/PMC7823360/ /pubmed/33375220 http://dx.doi.org/10.3390/jpm11010014 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Abate, Giulia
Vezzoli, Marika
Polito, Letizia
Guaita, Antonio
Albani, Diego
Marizzoni, Moira
Garrafa, Emirena
Marengoni, Alessandra
Forloni, Gianluigi
Frisoni, Giovanni B.
Cummings, Jeffrey L.
Memo, Maurizio
Uberti, Daniela
A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title_full A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title_fullStr A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title_full_unstemmed A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title_short A Conformation Variant of p53 Combined with Machine Learning Identifies Alzheimer Disease in Preclinical and Prodromal Stages
title_sort conformation variant of p53 combined with machine learning identifies alzheimer disease in preclinical and prodromal stages
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823360/
https://www.ncbi.nlm.nih.gov/pubmed/33375220
http://dx.doi.org/10.3390/jpm11010014
work_keys_str_mv AT abategiulia aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT vezzolimarika aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT politoletizia aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT guaitaantonio aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT albanidiego aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT marizzonimoira aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT garrafaemirena aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT marengonialessandra aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT forlonigianluigi aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT frisonigiovannib aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT cummingsjeffreyl aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT memomaurizio aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT ubertidaniela aconformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT abategiulia conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT vezzolimarika conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT politoletizia conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT guaitaantonio conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT albanidiego conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT marizzonimoira conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT garrafaemirena conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT marengonialessandra conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT forlonigianluigi conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT frisonigiovannib conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT cummingsjeffreyl conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT memomaurizio conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages
AT ubertidaniela conformationvariantofp53combinedwithmachinelearningidentifiesalzheimerdiseaseinpreclinicalandprodromalstages