Cargando…

Filtration of Elastic Polymers and Spherical Gels through a Silica-Deposited Layer on a Porous Membrane

A 120-nm silica suspension was permeated through a porous polyethylene (PE) hollow-fiber membrane, as was a solution of deformable elastic particles of poly(N-isopropylacrylamide) (PNIPAM) gel and dextran. The amount adsorbed and flux of permeation were analyzed with ordinary differential equations...

Descripción completa

Detalles Bibliográficos
Autores principales: Hidane, Takanori, Kitani, Hidemi, Morisada, Shintaro, Ohto, Keisuke, Kawakita, Hidetaka, Furuta, Sachiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823386/
https://www.ncbi.nlm.nih.gov/pubmed/33379410
http://dx.doi.org/10.3390/membranes11010022
Descripción
Sumario:A 120-nm silica suspension was permeated through a porous polyethylene (PE) hollow-fiber membrane, as was a solution of deformable elastic particles of poly(N-isopropylacrylamide) (PNIPAM) gel and dextran. The amount adsorbed and flux of permeation were analyzed with ordinary differential equations to obtain adsorption coefficients, maximum amounts adsorbed, and pore-narrowing factors. The thickness of the “silica-deposited layer” on the membrane was 1 μm. In a batch adsorption mode, 5.0 mg of PNIPAM gel and 30 mg of dextran were adsorbed on the PE membrane, with no adsorption on the silica. The PE membrane pores were narrowed by a secondary layer of adsorbed PNIPAM gel. When filtered through the silica-deposited layer, PNIPAM gel occupies gaps, resulting in a reduced permeation flux. Dextran passed through the silica-deposited layer and was partially adsorbed on the PE membrane. The modified membrane can control adsorption, filtration, and flux permeation, which leads to dynamic membrane separations.