Cargando…
DIANA-mAP: Analyzing miRNA from Raw NGS Data to Quantification
microRNAs (miRNAs) are small non-coding RNAs (~22 nts) that are considered central post-transcriptional regulators of gene expression and key components in many pathological conditions. Next-Generation Sequencing (NGS) technologies have led to inexpensive, massive data production, revolutionizing ev...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823405/ https://www.ncbi.nlm.nih.gov/pubmed/33396959 http://dx.doi.org/10.3390/genes12010046 |
Sumario: | microRNAs (miRNAs) are small non-coding RNAs (~22 nts) that are considered central post-transcriptional regulators of gene expression and key components in many pathological conditions. Next-Generation Sequencing (NGS) technologies have led to inexpensive, massive data production, revolutionizing every research aspect in the fields of biology and medicine. Particularly, small RNA-Seq (sRNA-Seq) enables small non-coding RNA quantification on a high-throughput scale, providing a closer look into the expression profiles of these crucial regulators within the cell. Here, we present DIANA-microRNA-Analysis-Pipeline (DIANA-mAP), a fully automated computational pipeline that allows the user to perform miRNA NGS data analysis from raw sRNA-Seq libraries to quantification and Differential Expression Analysis in an easy, scalable, efficient, and intuitive way. Emphasis has been given to data pre-processing, an early, critical step in the analysis for the robustness of the final results and conclusions. Through modularity, parallelizability and customization, DIANA-mAP produces high quality expression results, reports and graphs for downstream data mining and statistical analysis. In an extended evaluation, the tool outperforms similar tools providing pre-processing without any adapter knowledge. Closing, DIANA-mAP is a freely available tool. It is available dockerized with no dependency installations or standalone, accompanied by an installation manual through Github. |
---|