Cargando…
ML-Based Analysis of Particle Distributions in High-Intensity Laser Experiments: Role of Binning Strategy
When entering the phase of big data processing and statistical inferences in experimental physics, the efficient use of machine learning methods may require optimal data preprocessing methods and, in particular, optimal balance between details and noise. In experimental studies of strong-field quant...
Autores principales: | Rodimkov, Yury, Efimenko, Evgeny, Volokitin, Valentin, Panova, Elena, Polovinkin, Alexey, Meyerov, Iosif, Gonoskov, Arkady |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823469/ https://www.ncbi.nlm.nih.gov/pubmed/33375733 http://dx.doi.org/10.3390/e23010021 |
Ejemplares similares
-
Towards ML-Based Diagnostics of Laser–Plasma Interactions
por: Rodimkov, Yury, et al.
Publicado: (2021) -
Extreme plasma states in laser-governed vacuum breakdown
por: Efimenko, Evgeny S., et al.
Publicado: (2018) -
Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics
por: Gonoskov, A., et al.
Publicado: (2019) -
Transforming Lindblad Equations into Systems of Real-Valued Linear Equations: Performance Optimization and Parallelization of an Algorithm
por: Meyerov, Iosif, et al.
Publicado: (2020) -
Performance and Scalability Analysis of CNN-based Deep Learning Inference in the Intel Distribution of OpenVINO Toolkit
por: Meyerov, Iosif
Publicado: (2019)