Cargando…
Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase
Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to thei...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823470/ https://www.ncbi.nlm.nih.gov/pubmed/33396438 http://dx.doi.org/10.3390/life11010021 |
_version_ | 1783639843174088704 |
---|---|
author | Turek, Ilona Gehring, Chris Irving, Helen |
author_facet | Turek, Ilona Gehring, Chris Irving, Helen |
author_sort | Turek, Ilona |
collection | PubMed |
description | Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses. |
format | Online Article Text |
id | pubmed-7823470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78234702021-01-24 Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase Turek, Ilona Gehring, Chris Irving, Helen Life (Basel) Article Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses. MDPI 2020-12-31 /pmc/articles/PMC7823470/ /pubmed/33396438 http://dx.doi.org/10.3390/life11010021 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Turek, Ilona Gehring, Chris Irving, Helen Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title | Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title_full | Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title_fullStr | Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title_full_unstemmed | Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title_short | Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase |
title_sort | arabidopsis plant natriuretic peptide is a novel interactor of rubisco activase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823470/ https://www.ncbi.nlm.nih.gov/pubmed/33396438 http://dx.doi.org/10.3390/life11010021 |
work_keys_str_mv | AT turekilona arabidopsisplantnatriureticpeptideisanovelinteractorofrubiscoactivase AT gehringchris arabidopsisplantnatriureticpeptideisanovelinteractorofrubiscoactivase AT irvinghelen arabidopsisplantnatriureticpeptideisanovelinteractorofrubiscoactivase |