Cargando…

Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and de...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadura, Iwona, Latowski, Dariusz, Oklestkova, Jana, Gruszka, Damian, Chyc, Marek, Janeczko, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823496/
https://www.ncbi.nlm.nih.gov/pubmed/33383794
http://dx.doi.org/10.3390/biom11010027
_version_ 1783639849323986944
author Sadura, Iwona
Latowski, Dariusz
Oklestkova, Jana
Gruszka, Damian
Chyc, Marek
Janeczko, Anna
author_facet Sadura, Iwona
Latowski, Dariusz
Oklestkova, Jana
Gruszka, Damian
Chyc, Marek
Janeczko, Anna
author_sort Sadura, Iwona
collection PubMed
description Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.
format Online
Article
Text
id pubmed-7823496
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78234962021-01-24 Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures Sadura, Iwona Latowski, Dariusz Oklestkova, Jana Gruszka, Damian Chyc, Marek Janeczko, Anna Biomolecules Article Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts. MDPI 2020-12-29 /pmc/articles/PMC7823496/ /pubmed/33383794 http://dx.doi.org/10.3390/biom11010027 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sadura, Iwona
Latowski, Dariusz
Oklestkova, Jana
Gruszka, Damian
Chyc, Marek
Janeczko, Anna
Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title_full Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title_fullStr Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title_full_unstemmed Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title_short Molecular Dynamics of Chloroplast Membranes Isolated from Wild-Type Barley and a Brassinosteroid-Deficient Mutant Acclimated to Low and High Temperatures
title_sort molecular dynamics of chloroplast membranes isolated from wild-type barley and a brassinosteroid-deficient mutant acclimated to low and high temperatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823496/
https://www.ncbi.nlm.nih.gov/pubmed/33383794
http://dx.doi.org/10.3390/biom11010027
work_keys_str_mv AT saduraiwona moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures
AT latowskidariusz moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures
AT oklestkovajana moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures
AT gruszkadamian moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures
AT chycmarek moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures
AT janeczkoanna moleculardynamicsofchloroplastmembranesisolatedfromwildtypebarleyandabrassinosteroiddeficientmutantacclimatedtolowandhightemperatures