Cargando…
Metabolomic Analysis of Response to Nitrogen-Limiting Conditions in Yarrowia spp.
Yarrowia is a yeast genus that has been used as a model oleaginous taxon for a wide array of studies. However, information regarding metabolite changes within Yarrowia spp. under different environmental conditions is still limited. Among various factors affecting Yarrowia metabolism, nitrogen-limiti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823547/ https://www.ncbi.nlm.nih.gov/pubmed/33383744 http://dx.doi.org/10.3390/metabo11010016 |
Sumario: | Yarrowia is a yeast genus that has been used as a model oleaginous taxon for a wide array of studies. However, information regarding metabolite changes within Yarrowia spp. under different environmental conditions is still limited. Among various factors affecting Yarrowia metabolism, nitrogen-limiting conditions have a profound effect on the metabolic state of yeast. In this study, a time-course LC-MS/MS-based metabolome analysis of Y. lipolytica was performed to determine the optimal cultivation time and carbon-to-nitrogen ratio for studying the effects of nitrogen-limiting conditions on Yarrowia; we found that cultivation time of 36 h and carbon-to-nitrogen ratio of 4:1 and 5:0 was suitable for studying the effects of nitrogen-limiting conditions on Yarrowia and these conditions were applied to six strains of Yarrowia. These six strains of Yarrowia showed similar responses to nitrogen-limiting conditions; however, each strain had a unique metabolomic profile. Purine and pyrimidine metabolism were the most highly affected biological pathways in nitrogen-limiting conditions, indicating that these conditions affect energy availability within cells. This stress leads to a shift in cells to the utilization of a less ATP-dependent biological pathway. This information will be beneficial for the development of Yarrowia strains for further scientific and industrial applications. |
---|