Cargando…
Novel Convolutional Neural Network with Variational Information Bottleneck for P300 Detection
In the area of brain-computer interfaces (BCI), the detection of P300 is a very important technique and has a lot of applications. Although this problem has been studied for decades, it is still a tough problem in electroencephalography (EEG) signal processing owing to its high dimension features an...
Autores principales: | Liao, Hongpeng, Xu, Jianwu, Yu, Zhuliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823555/ https://www.ncbi.nlm.nih.gov/pubmed/33383909 http://dx.doi.org/10.3390/e23010039 |
Ejemplares similares
-
Decoding P300 Variability Using Convolutional Neural Networks
por: Solon, Amelia J., et al.
Publicado: (2019) -
A P300-Detection Method Based on Logistic Regression and a Convolutional Neural Network
por: Li, Qi, et al.
Publicado: (2022) -
Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks
por: Tang Nguyen, Thanh, et al.
Publicado: (2019) -
A separable convolutional neural network-based fast recognition method for AR-P300
por: He, Chunzhao, et al.
Publicado: (2022) -
Image-Based Ship Detection Using Deep Variational Information Bottleneck
por: Ngo, Duc-Dat, et al.
Publicado: (2023)