Cargando…

Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates

The marine red algae Asparagopsis armata is an invasive species gaining competitive advantage by releasing large amounts of toxic compounds to the surrounding invaded area. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Carla O., Novais, Sara C., Soares, Amadeu M. V. M., Barata, Carlos, Lemos, Marco F. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823594/
https://www.ncbi.nlm.nih.gov/pubmed/33375546
http://dx.doi.org/10.3390/toxins13010015
_version_ 1783639872783777792
author Silva, Carla O.
Novais, Sara C.
Soares, Amadeu M. V. M.
Barata, Carlos
Lemos, Marco F. L.
author_facet Silva, Carla O.
Novais, Sara C.
Soares, Amadeu M. V. M.
Barata, Carlos
Lemos, Marco F. L.
author_sort Silva, Carla O.
collection PubMed
description The marine red algae Asparagopsis armata is an invasive species gaining competitive advantage by releasing large amounts of toxic compounds to the surrounding invaded area. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the common prawn Palaemon elegans and the marine snail Gibbula umbilicalis to the exudate of this seaweed. The seaweed was collected and placed in a tank for 12 h in the dark in a 1:10 ratio. Afterwards the seawater medium containing the released secondary metabolites was collected for further testing. Lethal and sublethal effects of A. armata were investigated. Biochemical biomarker responses associated with energy metabolism (lactate dehydrogenase, LDH; electron transport system activity, ETS; lipid, protein and carbohydrate content) were analysed. The biomarker responses showed physiological status impairment of invertebrates after exposure to low concentrations of this algal exudate. The highest concentrations of exudate significantly increased lipid content in both organisms. In the shrimp, protein content, ETS, and LDH were also significantly increased. By contrast, these parameters were significantly decreased in G. umbilicalis. A behavioural impairment was also observed in G. umbilicalis exposed to A. armata exudate, reducing feeding consumption. These results represent an important step in the research of natural toxic exudates released to the environment and prospective effects of this seaweed in invaded communities under increasing global change scenarios.
format Online
Article
Text
id pubmed-7823594
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78235942021-01-24 Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates Silva, Carla O. Novais, Sara C. Soares, Amadeu M. V. M. Barata, Carlos Lemos, Marco F. L. Toxins (Basel) Article The marine red algae Asparagopsis armata is an invasive species gaining competitive advantage by releasing large amounts of toxic compounds to the surrounding invaded area. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the common prawn Palaemon elegans and the marine snail Gibbula umbilicalis to the exudate of this seaweed. The seaweed was collected and placed in a tank for 12 h in the dark in a 1:10 ratio. Afterwards the seawater medium containing the released secondary metabolites was collected for further testing. Lethal and sublethal effects of A. armata were investigated. Biochemical biomarker responses associated with energy metabolism (lactate dehydrogenase, LDH; electron transport system activity, ETS; lipid, protein and carbohydrate content) were analysed. The biomarker responses showed physiological status impairment of invertebrates after exposure to low concentrations of this algal exudate. The highest concentrations of exudate significantly increased lipid content in both organisms. In the shrimp, protein content, ETS, and LDH were also significantly increased. By contrast, these parameters were significantly decreased in G. umbilicalis. A behavioural impairment was also observed in G. umbilicalis exposed to A. armata exudate, reducing feeding consumption. These results represent an important step in the research of natural toxic exudates released to the environment and prospective effects of this seaweed in invaded communities under increasing global change scenarios. MDPI 2020-12-25 /pmc/articles/PMC7823594/ /pubmed/33375546 http://dx.doi.org/10.3390/toxins13010015 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Silva, Carla O.
Novais, Sara C.
Soares, Amadeu M. V. M.
Barata, Carlos
Lemos, Marco F. L.
Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title_full Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title_fullStr Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title_full_unstemmed Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title_short Impacts of the Invasive Seaweed Asparagopsis armata Exudate on Energetic Metabolism of Rock Pool Invertebrates
title_sort impacts of the invasive seaweed asparagopsis armata exudate on energetic metabolism of rock pool invertebrates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823594/
https://www.ncbi.nlm.nih.gov/pubmed/33375546
http://dx.doi.org/10.3390/toxins13010015
work_keys_str_mv AT silvacarlao impactsoftheinvasiveseaweedasparagopsisarmataexudateonenergeticmetabolismofrockpoolinvertebrates
AT novaissarac impactsoftheinvasiveseaweedasparagopsisarmataexudateonenergeticmetabolismofrockpoolinvertebrates
AT soaresamadeumvm impactsoftheinvasiveseaweedasparagopsisarmataexudateonenergeticmetabolismofrockpoolinvertebrates
AT baratacarlos impactsoftheinvasiveseaweedasparagopsisarmataexudateonenergeticmetabolismofrockpoolinvertebrates
AT lemosmarcofl impactsoftheinvasiveseaweedasparagopsisarmataexudateonenergeticmetabolismofrockpoolinvertebrates