Cargando…

Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality

Synchronization is an important behavior that characterizes many natural and human made systems that are composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Such systems synchronize because of the com...

Descripción completa

Detalles Bibliográficos
Autores principales: Muolo, Riccardo, Carletti, Timoteo, Gleeson, James P., Asllani, Malbor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823721/
https://www.ncbi.nlm.nih.gov/pubmed/33383735
http://dx.doi.org/10.3390/e23010036
_version_ 1783639903450431488
author Muolo, Riccardo
Carletti, Timoteo
Gleeson, James P.
Asllani, Malbor
author_facet Muolo, Riccardo
Carletti, Timoteo
Gleeson, James P.
Asllani, Malbor
author_sort Muolo, Riccardo
collection PubMed
description Synchronization is an important behavior that characterizes many natural and human made systems that are composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Such systems synchronize because of the complex set of coupling they exhibit, with the latter being modeled by complex networks. The dynamical behavior of the system and the topology of the underlying network are strongly intertwined, raising the question of the optimal architecture that makes synchronization robust. The Master Stability Function (MSF) has been proposed and extensively studied as a generic framework for tackling synchronization problems. Using this method, it has been shown that, for a class of models, synchronization in strongly directed networks is robust to external perturbations. Recent findings indicate that many real-world networks are strongly directed, being potential candidates for optimal synchronization. Moreover, many empirical networks are also strongly non-normal. Inspired by this latter fact in this work, we address the role of the non-normality in the synchronization dynamics by pointing out that standard techniques, such as the MSF, may fail to predict the stability of synchronized states. We demonstrate that, due to a transient growth that is induced by the structure’s non-normality, the system might lose synchronization, contrary to the spectral prediction. These results lead to a trade-off between non-normality and directedness that should be properly considered when designing an optimal network, enhancing the robustness of synchronization.
format Online
Article
Text
id pubmed-7823721
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78237212021-02-24 Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality Muolo, Riccardo Carletti, Timoteo Gleeson, James P. Asllani, Malbor Entropy (Basel) Article Synchronization is an important behavior that characterizes many natural and human made systems that are composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Such systems synchronize because of the complex set of coupling they exhibit, with the latter being modeled by complex networks. The dynamical behavior of the system and the topology of the underlying network are strongly intertwined, raising the question of the optimal architecture that makes synchronization robust. The Master Stability Function (MSF) has been proposed and extensively studied as a generic framework for tackling synchronization problems. Using this method, it has been shown that, for a class of models, synchronization in strongly directed networks is robust to external perturbations. Recent findings indicate that many real-world networks are strongly directed, being potential candidates for optimal synchronization. Moreover, many empirical networks are also strongly non-normal. Inspired by this latter fact in this work, we address the role of the non-normality in the synchronization dynamics by pointing out that standard techniques, such as the MSF, may fail to predict the stability of synchronized states. We demonstrate that, due to a transient growth that is induced by the structure’s non-normality, the system might lose synchronization, contrary to the spectral prediction. These results lead to a trade-off between non-normality and directedness that should be properly considered when designing an optimal network, enhancing the robustness of synchronization. MDPI 2020-12-29 /pmc/articles/PMC7823721/ /pubmed/33383735 http://dx.doi.org/10.3390/e23010036 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Muolo, Riccardo
Carletti, Timoteo
Gleeson, James P.
Asllani, Malbor
Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title_full Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title_fullStr Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title_full_unstemmed Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title_short Synchronization Dynamics in Non-Normal Networks: The Trade-Off for Optimality
title_sort synchronization dynamics in non-normal networks: the trade-off for optimality
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823721/
https://www.ncbi.nlm.nih.gov/pubmed/33383735
http://dx.doi.org/10.3390/e23010036
work_keys_str_mv AT muoloriccardo synchronizationdynamicsinnonnormalnetworksthetradeoffforoptimality
AT carlettitimoteo synchronizationdynamicsinnonnormalnetworksthetradeoffforoptimality
AT gleesonjamesp synchronizationdynamicsinnonnormalnetworksthetradeoffforoptimality
AT asllanimalbor synchronizationdynamicsinnonnormalnetworksthetradeoffforoptimality