Cargando…

Electrical Excitation Decay Time in Chains of Nanoscale Non-Point Dipoles

On the basis of a previously developed model of disperse systems containing non-point dipole particles self-assembled into chains inside a liquid substrate, the decay time of electrical excitations induced in dipoles by an external field is investigated. It was shown that when the external field is...

Descripción completa

Detalles Bibliográficos
Autor principal: Fateev, Evgeny G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823875/
https://www.ncbi.nlm.nih.gov/pubmed/33396296
http://dx.doi.org/10.3390/nano11010074
Descripción
Sumario:On the basis of a previously developed model of disperse systems containing non-point dipole particles self-assembled into chains inside a liquid substrate, the decay time of electrical excitations induced in dipoles by an external field is investigated. It was shown that when the external field is completely turned off (from [Formula: see text] V / m to [Formula: see text] V / m levels) at biologically significant low frequencies (for example, 13 Hz), the decay time of the excitations of nanoscale dipoles nonlinearly depends on the chain length. It was found that the decay time of excitations increases sharply (by four to five orders of magnitude), with an increase in the chain length more than 19–20 dipoles.