Cargando…
Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types
Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823933/ https://www.ncbi.nlm.nih.gov/pubmed/33374729 http://dx.doi.org/10.3390/pharmaceutics13010010 |
_version_ | 1783639954661834752 |
---|---|
author | Zavadskis, Sergejs Weidinger, Adelheid Hanetseder, Dominik Banerjee, Asmita Schneider, Cornelia Wolbank, Susanne Marolt Presen, Darja Kozlov, Andrey V. |
author_facet | Zavadskis, Sergejs Weidinger, Adelheid Hanetseder, Dominik Banerjee, Asmita Schneider, Cornelia Wolbank, Susanne Marolt Presen, Darja Kozlov, Andrey V. |
author_sort | Zavadskis, Sergejs |
collection | PubMed |
description | Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting mitochondrial function. The aim of this study was to investigate the effect of DPI on ROS metabolism and mitochondrial function in human amniotic membrane mesenchymal stromal cells (hAMSCs), human bone marrow mesenchymal stromal cells (hBMSCs), hBMSCs induced into osteoblast-like cells, and osteosarcoma cell line MG-63. Our data suggested a combination of a membrane potential sensitive fluorescent dye, tetramethylrhodamine methyl ester (TMRM), and a ROS-sensitive dye, CM-H2DCFDA, combined with a pretreatment with mitochondria-targeted ROS scavenger MitoTEMPO as a good tool to examine effects of DPI. We observed critical differences in ROS metabolism between hAMSCs, hBMSCs, osteoblast-like cells, and MG-63 cells, which were linked to energy metabolism. In cell types using predominantly glycolysis as the energy source, such as hAMSCs, DPI predominantly interacted with NOX, and it was not toxic for the cells. In hBMSCs, the ROS turnover was influenced by NOX activity rather than by the mitochondria. In cells with aerobic metabolism, such as MG 63, the mitochondria became an additional target for DPI, and these cells were prone to the toxic effects of DPI. In summary, our data suggest that undifferentiated cells rather than differentiated parenchymal cells should be considered as potential targets for DPI. |
format | Online Article Text |
id | pubmed-7823933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78239332021-01-24 Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types Zavadskis, Sergejs Weidinger, Adelheid Hanetseder, Dominik Banerjee, Asmita Schneider, Cornelia Wolbank, Susanne Marolt Presen, Darja Kozlov, Andrey V. Pharmaceutics Article Reactive oxygen species (ROS) have recently been recognized as important signal transducers, particularly regulating proliferation and differentiation of cells. Diphenyleneiodonium (DPI) is known as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) and is also affecting mitochondrial function. The aim of this study was to investigate the effect of DPI on ROS metabolism and mitochondrial function in human amniotic membrane mesenchymal stromal cells (hAMSCs), human bone marrow mesenchymal stromal cells (hBMSCs), hBMSCs induced into osteoblast-like cells, and osteosarcoma cell line MG-63. Our data suggested a combination of a membrane potential sensitive fluorescent dye, tetramethylrhodamine methyl ester (TMRM), and a ROS-sensitive dye, CM-H2DCFDA, combined with a pretreatment with mitochondria-targeted ROS scavenger MitoTEMPO as a good tool to examine effects of DPI. We observed critical differences in ROS metabolism between hAMSCs, hBMSCs, osteoblast-like cells, and MG-63 cells, which were linked to energy metabolism. In cell types using predominantly glycolysis as the energy source, such as hAMSCs, DPI predominantly interacted with NOX, and it was not toxic for the cells. In hBMSCs, the ROS turnover was influenced by NOX activity rather than by the mitochondria. In cells with aerobic metabolism, such as MG 63, the mitochondria became an additional target for DPI, and these cells were prone to the toxic effects of DPI. In summary, our data suggest that undifferentiated cells rather than differentiated parenchymal cells should be considered as potential targets for DPI. MDPI 2020-12-23 /pmc/articles/PMC7823933/ /pubmed/33374729 http://dx.doi.org/10.3390/pharmaceutics13010010 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zavadskis, Sergejs Weidinger, Adelheid Hanetseder, Dominik Banerjee, Asmita Schneider, Cornelia Wolbank, Susanne Marolt Presen, Darja Kozlov, Andrey V. Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title | Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title_full | Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title_fullStr | Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title_full_unstemmed | Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title_short | Effect of Diphenyleneiodonium Chloride on Intracellular Reactive Oxygen Species Metabolism with Emphasis on NADPH Oxidase and Mitochondria in Two Therapeutically Relevant Human Cell Types |
title_sort | effect of diphenyleneiodonium chloride on intracellular reactive oxygen species metabolism with emphasis on nadph oxidase and mitochondria in two therapeutically relevant human cell types |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823933/ https://www.ncbi.nlm.nih.gov/pubmed/33374729 http://dx.doi.org/10.3390/pharmaceutics13010010 |
work_keys_str_mv | AT zavadskissergejs effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT weidingeradelheid effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT hanetsederdominik effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT banerjeeasmita effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT schneidercornelia effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT wolbanksusanne effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT maroltpresendarja effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes AT kozlovandreyv effectofdiphenyleneiodoniumchlorideonintracellularreactiveoxygenspeciesmetabolismwithemphasisonnadphoxidaseandmitochondriaintwotherapeuticallyrelevanthumancelltypes |