Cargando…
Expectation-Maximization Algorithm for the Calibration of Complex Simulator Using a Gaussian Process Emulator
The approximated non-linear least squares (ALS) tunes or calibrates the computer model by minimizing the squared error between the computer output and real observations by using an emulator such as a Gaussian process (GP) model. A potential defect of the ALS method is that the emulator is constructe...
Autores principales: | Seo, Yun Am, Park, Jeong-Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823950/ https://www.ncbi.nlm.nih.gov/pubmed/33396233 http://dx.doi.org/10.3390/e23010053 |
Ejemplares similares
-
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
por: Wu, Weisan
Publicado: (2021) -
Generalized Nonlinear Least Squares Method for the Calibration of Complex Computer Code Using a Gaussian Process Surrogate
por: Lee, Youngsaeng, et al.
Publicado: (2020) -
Bayesian(3) Active Learning for the Gaussian Process Emulator Using Information Theory
por: Oladyshkin, Sergey, et al.
Publicado: (2020) -
A Batch Rival Penalized Expectation-Maximization Algorithm for Gaussian Mixture Clustering with Automatic Model Selection
por: Wen, Jiechang, et al.
Publicado: (2012) -
GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation
por: Tankhilevich, Evgeny, et al.
Publicado: (2020)