Cargando…
Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting
The miniaturization and integration of photonic devices are new requirements in the fast-growing optics field. In this paper, we focus on a feature-rich sub-wavelength nanograting-coated single-layer metal film. The numerical results show that the reflection behaviors of this proposed structure can...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823962/ https://www.ncbi.nlm.nih.gov/pubmed/33375468 http://dx.doi.org/10.3390/nano11010047 |
_version_ | 1783639961564610560 |
---|---|
author | Cui, Wenli Wu, Qiannan Chen, Bo Li, Xufeng Luo, Xiaolin Peng, Wei |
author_facet | Cui, Wenli Wu, Qiannan Chen, Bo Li, Xufeng Luo, Xiaolin Peng, Wei |
author_sort | Cui, Wenli |
collection | PubMed |
description | The miniaturization and integration of photonic devices are new requirements in the fast-growing optics field. In this paper, we focus on a feature-rich sub-wavelength nanograting-coated single-layer metal film. The numerical results show that the reflection behaviors of this proposed structure can realize bidirectional dual-channel ultra-narrowband polarized filtering and bidirectional wavelength-modulated sensing in a wide refractive index (RI) range from 1.0 to 1.4 for incident angle of 10° with transverse-magnetic (TM) polarized illumination at wavelengths between 550 nm to 1500 nm. Moreover, the bidirectional properties of filtering and sensing are not obviously decreased when increasing incident angle from 10° to 30°, and decreasing incident angle from 10° to 0°. The calculated RI sensitivity can be up to 592 nm/RIU with a high figure of merit (FOM) of 179.4 RIU(−1). More to the point, this nanograting has a simple structure and is less sensitive to the height and shape of grating ridge, which provides great convenience for the fabrication of devices. The other thing that is going on is that this structure can also realize synchronously tunable color filtering, including green to red, with high color purity in the visible band by choosing the period. The underlying physical mechanism is analyzed in detail, and is primarily attributed to surface plasmon polariton (SPP) resonance and dipole resonance at double plasmon resonance wavelengths. This work has tremendous potential in developing multipurpose and high-performance integrated optical devices such as spectral filters, colored displays and plasmon biomedical sensors. |
format | Online Article Text |
id | pubmed-7823962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78239622021-01-24 Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting Cui, Wenli Wu, Qiannan Chen, Bo Li, Xufeng Luo, Xiaolin Peng, Wei Nanomaterials (Basel) Article The miniaturization and integration of photonic devices are new requirements in the fast-growing optics field. In this paper, we focus on a feature-rich sub-wavelength nanograting-coated single-layer metal film. The numerical results show that the reflection behaviors of this proposed structure can realize bidirectional dual-channel ultra-narrowband polarized filtering and bidirectional wavelength-modulated sensing in a wide refractive index (RI) range from 1.0 to 1.4 for incident angle of 10° with transverse-magnetic (TM) polarized illumination at wavelengths between 550 nm to 1500 nm. Moreover, the bidirectional properties of filtering and sensing are not obviously decreased when increasing incident angle from 10° to 30°, and decreasing incident angle from 10° to 0°. The calculated RI sensitivity can be up to 592 nm/RIU with a high figure of merit (FOM) of 179.4 RIU(−1). More to the point, this nanograting has a simple structure and is less sensitive to the height and shape of grating ridge, which provides great convenience for the fabrication of devices. The other thing that is going on is that this structure can also realize synchronously tunable color filtering, including green to red, with high color purity in the visible band by choosing the period. The underlying physical mechanism is analyzed in detail, and is primarily attributed to surface plasmon polariton (SPP) resonance and dipole resonance at double plasmon resonance wavelengths. This work has tremendous potential in developing multipurpose and high-performance integrated optical devices such as spectral filters, colored displays and plasmon biomedical sensors. MDPI 2020-12-27 /pmc/articles/PMC7823962/ /pubmed/33375468 http://dx.doi.org/10.3390/nano11010047 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cui, Wenli Wu, Qiannan Chen, Bo Li, Xufeng Luo, Xiaolin Peng, Wei Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title | Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title_full | Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title_fullStr | Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title_full_unstemmed | Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title_short | Bidirectional Angle-Tolerant Polarization-Tuned Filtering and Wide-Range Refractive Index Sensing Based on Metal Film Coated Nanograting |
title_sort | bidirectional angle-tolerant polarization-tuned filtering and wide-range refractive index sensing based on metal film coated nanograting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823962/ https://www.ncbi.nlm.nih.gov/pubmed/33375468 http://dx.doi.org/10.3390/nano11010047 |
work_keys_str_mv | AT cuiwenli bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting AT wuqiannan bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting AT chenbo bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting AT lixufeng bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting AT luoxiaolin bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting AT pengwei bidirectionalangletolerantpolarizationtunedfilteringandwiderangerefractiveindexsensingbasedonmetalfilmcoatednanograting |