Cargando…
A New Approach for the Microencapsulation of Clitoria Ternatea Petal Extracts by a High-Pressure Processing Method
Toxic organic solvent residues and the active substances of thermal degradation (such as anthocyanin and polyphenols) are always a concern with the liposomes produced by traditional techniques. The present study focuses on a new approach for the microencapsulation of Clitoria ternatea petal (CTP) ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824060/ https://www.ncbi.nlm.nih.gov/pubmed/33374428 http://dx.doi.org/10.3390/pharmaceutics13010023 |
Sumario: | Toxic organic solvent residues and the active substances of thermal degradation (such as anthocyanin and polyphenols) are always a concern with the liposomes produced by traditional techniques. The present study focuses on a new approach for the microencapsulation of Clitoria ternatea petal (CTP) extracts, which contain anthocyanins, by high-pressure processing (HPP) at room temperature. Thus, a series of CTP liposomes were prepared and their physicochemical properties were analyzed by laser granulometry and by scanning electron microscopy (SEM). The results revealed that the average particle size of the liposomes after HPP treatment increased gradually from 300 MPa to 600 MPa, possibly due to the aggregation of liposomes and damage to the phospholipid bilayers. For the preparation of liposomes by the HPP method at 300 MPa, the mean particle size, polydispersity index (PDI), and encapsulation efficiency were 240.7 nm, 0.37, and 77.8%, respectively. The HPP method provided a number of advantages over conventional methods (magnet stirring and ultrasonication) as it could allow liposome preparation with higher encapsulation efficiency, smaller size, and narrower, more reproducible particle size distribution. Conclusively, microencapsulation in the liposomes was successfully achieved with the fast-adiabatic expansion of HPP. |
---|