Cargando…
Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm
Single-cell transcriptomics data, when combined with in situ hybridization patterns of specific genes, can help in recovering the spatial information lost during cell isolation. Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium conducted a crowd-sourced competition known as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824175/ https://www.ncbi.nlm.nih.gov/pubmed/33379262 http://dx.doi.org/10.3390/genes12010028 |
_version_ | 1783640012547424256 |
---|---|
author | Gupta, Shruti Verma, Ajay Kumar Ahmad, Shandar |
author_facet | Gupta, Shruti Verma, Ajay Kumar Ahmad, Shandar |
author_sort | Gupta, Shruti |
collection | PubMed |
description | Single-cell transcriptomics data, when combined with in situ hybridization patterns of specific genes, can help in recovering the spatial information lost during cell isolation. Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium conducted a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC) to predict the masked locations of single cells from a set of 60, 40 and 20 genes out of 84 in situ gene patterns known in Drosophila embryo. We applied a genetic algorithm (GA) to predict the most important genes that carry positional and proximity information of the single-cell origins, in combination with the base distance mapping algorithm DistMap. Resulting gene selection was found to perform well and was ranked among top 10 in two of the three sub-challenges. However, the details of the method did not make it to the main challenge publication, due to an intricate aggregation ranking. In this work, we discuss the detailed implementation of GA and its post-challenge parameterization, with a view to identify potential areas where GA-based approaches of gene-set selection for topological association prediction may be improved, to be more effective. We believe this work provides additional insights into the feature-selection strategies and their relevance to single-cell similarity prediction and will form a strong addendum to the recently published work from the consortium. |
format | Online Article Text |
id | pubmed-7824175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78241752021-01-24 Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm Gupta, Shruti Verma, Ajay Kumar Ahmad, Shandar Genes (Basel) Article Single-cell transcriptomics data, when combined with in situ hybridization patterns of specific genes, can help in recovering the spatial information lost during cell isolation. Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium conducted a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC) to predict the masked locations of single cells from a set of 60, 40 and 20 genes out of 84 in situ gene patterns known in Drosophila embryo. We applied a genetic algorithm (GA) to predict the most important genes that carry positional and proximity information of the single-cell origins, in combination with the base distance mapping algorithm DistMap. Resulting gene selection was found to perform well and was ranked among top 10 in two of the three sub-challenges. However, the details of the method did not make it to the main challenge publication, due to an intricate aggregation ranking. In this work, we discuss the detailed implementation of GA and its post-challenge parameterization, with a view to identify potential areas where GA-based approaches of gene-set selection for topological association prediction may be improved, to be more effective. We believe this work provides additional insights into the feature-selection strategies and their relevance to single-cell similarity prediction and will form a strong addendum to the recently published work from the consortium. MDPI 2020-12-28 /pmc/articles/PMC7824175/ /pubmed/33379262 http://dx.doi.org/10.3390/genes12010028 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gupta, Shruti Verma, Ajay Kumar Ahmad, Shandar Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title | Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title_full | Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title_fullStr | Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title_full_unstemmed | Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title_short | Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm |
title_sort | feature selection for topological proximity prediction of single-cell transcriptomic profiles in drosophila embryo using genetic algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824175/ https://www.ncbi.nlm.nih.gov/pubmed/33379262 http://dx.doi.org/10.3390/genes12010028 |
work_keys_str_mv | AT guptashruti featureselectionfortopologicalproximitypredictionofsinglecelltranscriptomicprofilesindrosophilaembryousinggeneticalgorithm AT vermaajaykumar featureselectionfortopologicalproximitypredictionofsinglecelltranscriptomicprofilesindrosophilaembryousinggeneticalgorithm AT ahmadshandar featureselectionfortopologicalproximitypredictionofsinglecelltranscriptomicprofilesindrosophilaembryousinggeneticalgorithm |