Cargando…

Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release

Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels’ self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lip...

Descripción completa

Detalles Bibliográficos
Autores principales: Veloso, Sérgio R. S., Silva, Joana F. G., Hilliou, Loic, Moura, Cacilda, Coutinho, Paulo J. G., Martins, José A., Testa-Anta, Martín, Salgueiriño, Verónica, Correa-Duarte, Miguel A., Ferreira, Paula M. T., Castanheira, Elisabete M. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824179/
https://www.ncbi.nlm.nih.gov/pubmed/33374786
http://dx.doi.org/10.3390/nano11010016
_version_ 1783640013543571456
author Veloso, Sérgio R. S.
Silva, Joana F. G.
Hilliou, Loic
Moura, Cacilda
Coutinho, Paulo J. G.
Martins, José A.
Testa-Anta, Martín
Salgueiriño, Verónica
Correa-Duarte, Miguel A.
Ferreira, Paula M. T.
Castanheira, Elisabete M. S.
author_facet Veloso, Sérgio R. S.
Silva, Joana F. G.
Hilliou, Loic
Moura, Cacilda
Coutinho, Paulo J. G.
Martins, José A.
Testa-Anta, Martín
Salgueiriño, Verónica
Correa-Duarte, Miguel A.
Ferreira, Paula M. T.
Castanheira, Elisabete M. S.
author_sort Veloso, Sérgio R. S.
collection PubMed
description Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels’ self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
format Online
Article
Text
id pubmed-7824179
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78241792021-01-24 Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release Veloso, Sérgio R. S. Silva, Joana F. G. Hilliou, Loic Moura, Cacilda Coutinho, Paulo J. G. Martins, José A. Testa-Anta, Martín Salgueiriño, Verónica Correa-Duarte, Miguel A. Ferreira, Paula M. T. Castanheira, Elisabete M. S. Nanomaterials (Basel) Article Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels’ self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications. MDPI 2020-12-23 /pmc/articles/PMC7824179/ /pubmed/33374786 http://dx.doi.org/10.3390/nano11010016 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Veloso, Sérgio R. S.
Silva, Joana F. G.
Hilliou, Loic
Moura, Cacilda
Coutinho, Paulo J. G.
Martins, José A.
Testa-Anta, Martín
Salgueiriño, Verónica
Correa-Duarte, Miguel A.
Ferreira, Paula M. T.
Castanheira, Elisabete M. S.
Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title_full Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title_fullStr Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title_full_unstemmed Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title_short Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release
title_sort impact of citrate and lipid-functionalized magnetic nanoparticles in dehydropeptide supramolecular magnetogels: properties, design and drug release
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824179/
https://www.ncbi.nlm.nih.gov/pubmed/33374786
http://dx.doi.org/10.3390/nano11010016
work_keys_str_mv AT velososergiors impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT silvajoanafg impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT hilliouloic impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT mouracacilda impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT coutinhopaulojg impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT martinsjosea impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT testaantamartin impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT salgueirinoveronica impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT correaduartemiguela impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT ferreirapaulamt impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease
AT castanheiraelisabetems impactofcitrateandlipidfunctionalizedmagneticnanoparticlesindehydropeptidesupramolecularmagnetogelspropertiesdesignanddrugrelease