Cargando…
Explainable AI: A Review of Machine Learning Interpretability Methods
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning...
Autores principales: | Linardatos, Pantelis, Papastefanopoulos, Vasilis, Kotsiantis, Sotiris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824368/ https://www.ncbi.nlm.nih.gov/pubmed/33375658 http://dx.doi.org/10.3390/e23010018 |
Ejemplares similares
-
CO(2) concentration forecasting in smart cities using a hybrid ARIMA–TFT model on multivariate time series IoT data
por: Linardatos, Pantelis, et al.
Publicado: (2023) -
Special Issue on Machine Learning and AI for Sensors
por: Pintelas, Panagiotis, et al.
Publicado: (2023) -
Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
An introduction to machine learning interpretability: an applied perspective on fairness, accountability, transparency, and explainable AI
por: Hall, Patrick, et al.
Publicado: (2019) -
An introduction to machine learning interpretability: an applied perspective on fairness, accountability, transparency, and explainable AI
por: Hall, Patrick, et al.
Publicado: (2018)