Cargando…

An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield

Ustilago maydis, a member of the Ustilaginaceae family, is a promising host for the production of several metabolites including itaconic acid. This dicarboxylate has great potential as a bio-based building block in the polymer industry, and is of special interest for pharmaceutical applications. Sev...

Descripción completa

Detalles Bibliográficos
Autores principales: Becker, Johanna, Hosseinpour Tehrani, Hamed, Ernst, Philipp, Blank, Lars Mathias, Wierckx, Nick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824378/
https://www.ncbi.nlm.nih.gov/pubmed/33396473
http://dx.doi.org/10.3390/jof7010020
Descripción
Sumario:Ustilago maydis, a member of the Ustilaginaceae family, is a promising host for the production of several metabolites including itaconic acid. This dicarboxylate has great potential as a bio-based building block in the polymer industry, and is of special interest for pharmaceutical applications. Several itaconate overproducing Ustilago strains have been generated by metabolic and morphology engineering. This yielded stabilized unicellular morphology through fuz7 deletion, reduction of by-product formation through deletion of genes responsible for itaconate oxidation and (glyco)lipid production, and the overexpression of the regulator of the itaconate cluster ria1 and the mitochondrial tricarboxylate transporter encoded by mttA from Aspergillus terreus. In this study, itaconate production was further optimized by consolidating these different optimizations into one strain. The combined modifications resulted in itaconic acid production at theoretical maximal yield, which was achieved under biotechnologically relevant fed-batch fermentations with continuous feed.