Cargando…
On (Non-)Monotonicity and Phase Diagram of Finitary Random Interlacement
In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with respect to the expected length of each fiber. In contrast to the previously proved phase transition between sufficiently large and small fiber length, for all [Formula: see text] , FRI is NOT stochastically monotone...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824420/ https://www.ncbi.nlm.nih.gov/pubmed/33406669 http://dx.doi.org/10.3390/e23010069 |
Sumario: | In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with respect to the expected length of each fiber. In contrast to the previously proved phase transition between sufficiently large and small fiber length, for all [Formula: see text] , FRI is NOT stochastically monotone as fiber length increases. At the same time, numerical evidence still strongly supports the existence and uniqueness of a critical fiber length, which is estimated theoretically and numerically to be an inversely proportional function with respect to system intensity. |
---|