Cargando…
On (Non-)Monotonicity and Phase Diagram of Finitary Random Interlacement
In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with respect to the expected length of each fiber. In contrast to the previously proved phase transition between sufficiently large and small fiber length, for all [Formula: see text] , FRI is NOT stochastically monotone...
Autores principales: | Cai, Zhenhao, Xiong, Yunfeng, Zhang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824420/ https://www.ncbi.nlm.nih.gov/pubmed/33406669 http://dx.doi.org/10.3390/e23010069 |
Ejemplares similares
-
Radical factorization in finitary ideal systems
por: Olberding, Bruce, et al.
Publicado: (2019) -
An introduction to random interlacements
por: Drewitz, Alexander, et al.
Publicado: (2014) -
Finitary measures for subshifts of finite type and sofic systems
por: Kitchens, Bruce, et al.
Publicado: (1985) -
Stochastic simulations data for figure 1 and the phase diagram construction for defining monotonic and non-monotonic regimes of the velocity as a function of k(off)
por: Singh, Divya, et al.
Publicado: (2019) -
On interlaced injector synchrotrons
por: Hardt, W
Publicado: (1966)