Cargando…
Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent year...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824489/ https://www.ncbi.nlm.nih.gov/pubmed/33396287 http://dx.doi.org/10.3390/mi12010038 |
_version_ | 1783640089873612800 |
---|---|
author | Vandekerckhove, Bram Missinne, Jeroen Vonck, Kristl Bauwens, Pieter Verplancke, Rik Boon, Paul Raedt, Robrecht Vanfleteren, Jan |
author_facet | Vandekerckhove, Bram Missinne, Jeroen Vonck, Kristl Bauwens, Pieter Verplancke, Rik Boon, Paul Raedt, Robrecht Vanfleteren, Jan |
author_sort | Vandekerckhove, Bram |
collection | PubMed |
description | Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant’s elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients. |
format | Online Article Text |
id | pubmed-7824489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78244892021-01-24 Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain Vandekerckhove, Bram Missinne, Jeroen Vonck, Kristl Bauwens, Pieter Verplancke, Rik Boon, Paul Raedt, Robrecht Vanfleteren, Jan Micromachines (Basel) Review Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant’s elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients. MDPI 2020-12-31 /pmc/articles/PMC7824489/ /pubmed/33396287 http://dx.doi.org/10.3390/mi12010038 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Vandekerckhove, Bram Missinne, Jeroen Vonck, Kristl Bauwens, Pieter Verplancke, Rik Boon, Paul Raedt, Robrecht Vanfleteren, Jan Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title | Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title_full | Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title_fullStr | Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title_full_unstemmed | Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title_short | Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain |
title_sort | technological challenges in the development of optogenetic closed-loop therapy approaches in epilepsy and related network disorders of the brain |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824489/ https://www.ncbi.nlm.nih.gov/pubmed/33396287 http://dx.doi.org/10.3390/mi12010038 |
work_keys_str_mv | AT vandekerckhovebram technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT missinnejeroen technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT vonckkristl technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT bauwenspieter technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT verplanckerik technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT boonpaul technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT raedtrobrecht technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain AT vanfleterenjan technologicalchallengesinthedevelopmentofoptogeneticclosedlooptherapyapproachesinepilepsyandrelatednetworkdisordersofthebrain |