Cargando…
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression
Hierarchical support vector regression (HSVR) models a function from data as a linear combination of SVR models at a range of scales, starting at a coarse scale and moving to finer scales as the hierarchy continues. In the original formulation of HSVR, there were no rules for choosing the depth of t...
Autores principales: | Mohr, Ryan, Fonoberova, Maria, Drmač, Zlatko, Manojlović, Iva, Mezić, Igor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824529/ https://www.ncbi.nlm.nih.gov/pubmed/33383907 http://dx.doi.org/10.3390/e23010037 |
Ejemplares similares
-
An agent-based model of urban insurgence: Effect of gathering sites and Koopman mode analysis
por: Fonoberova, Maria, et al.
Publicado: (2018) -
Koopman Mode Analysis of agent-based models of logistics processes
por: Hogg, James, et al.
Publicado: (2019) -
Exponentially decaying modes and long-term prediction of sea ice concentration using Koopman mode decomposition
por: Hogg, James, et al.
Publicado: (2020) -
In Silico Prediction of Intestinal Permeability by Hierarchical Support Vector Regression
por: Lee, Ming-Han, et al.
Publicado: (2020) -
The Redistribution of Power: Neurocardiac Signaling, Alcohol and Gender
por: Bates, Marsha E., et al.
Publicado: (2011)