Cargando…
A Two-Stage Approach for Bayesian Joint Models of Longitudinal and Survival Data: Correcting Bias with Informative Prior
Joint models of longitudinal and survival outcomes have gained much popularity in recent years, both in applications and in methodological development. This type of modelling is usually characterised by two submodels, one longitudinal (e.g., mixed-effects model) and one survival (e.g., Cox model), w...
Autores principales: | Leiva-Yamaguchi, Valeria, Alvares, Danilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824570/ https://www.ncbi.nlm.nih.gov/pubmed/33396212 http://dx.doi.org/10.3390/e23010050 |
Ejemplares similares
-
Mendelian randomization with Egger pleiotropy correction and weakly informative Bayesian priors
por: Schmidt, A F, et al.
Publicado: (2018) -
A Bayesian Analysis With Informative Prior on Disease Prevalence for Predicting Missing Values Due To Verification Bias
por: Hajivandi, Abdollah, et al.
Publicado: (2018) -
Bayesian Joint Modeling of Longitudinal and Survival Time Measurement of Hypertension Patients
por: Erango, Markos Abiso
Publicado: (2020) -
Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study
por: Huang, Yangxin, et al.
Publicado: (2022) -
Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors
por: Martel-Escobar, María, et al.
Publicado: (2018)