Cargando…
Causal Geometry
Information geometry has offered a way to formally study the efficacy of scientific models by quantifying the impact of model parameters on the predicted effects. However, there has been little formal investigation of causation in this framework, despite causal models being a fundamental part of sci...
Autores principales: | Chvykov, Pavel, Hoel, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7824647/ https://www.ncbi.nlm.nih.gov/pubmed/33375321 http://dx.doi.org/10.3390/e23010024 |
Ejemplares similares
-
On Geometry of Information Flow for Causal Inference
por: Surasinghe, Sudam, et al.
Publicado: (2020) -
Examining the Causal Structures of Deep Neural Networks Using Information Theory
por: Marrow, Scythia, et al.
Publicado: (2020) -
Causality Analysis with Information Geometry: A Comparison
por: Choong, Heng Jie, et al.
Publicado: (2023) -
What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks
por: Albantakis, Larissa, et al.
Publicado: (2019) -
The overfitted brain: Dreams evolved to assist generalization
por: Hoel, Erik
Publicado: (2021)